Chapter 1: Number System

1.3 Indices, Surds and Logarithms

Prepared by: kwkang

Learning Outcomes

- (a) Express the rules of indices
- (b) Explain the meaning of a surd and its conjugate
- (c) Perform algebraic operations on surds
- (d) Express the laws of logarithms such as:

(i)
$$\log_a MN = \log_a M + \log_a N$$

(ii) $\log_a \frac{M}{N} = \log_a M - \log_a N$

(iii) $\log_a M^N = N \log_a M$

Learning Outcomes

(d) Express the laws of logarithms such as:

(i)
$$\log_a MN = \log_a M + \log_a N$$

(ii) $\log_a \frac{M}{N} = \log_a M - \log_a N$
(iii) $\log_a M^N = N \log_a M$

(e) Change the base of logarithm using

$$\log_{a} M = \frac{\log_{b} M}{\log_{b} a}$$

Indices

$$a^{n} = a \times a \times a \times \dots \times a$$

$$n \text{ factors}$$

$$index$$

$$a^{n}$$
base

kwkang@KMK

Rules of indices

$$1. \quad a^m \times a^n = a^{m+n}$$

2. $a^m \div a^n = a^{m-n}$

3.
$$(a^m)^n = a^{m \times n}$$

Bloom: Remembering

Indices

Zero index
$$a^0 = 1, a \neq 0$$

Negative index
$$a^{-n} = \frac{1}{a^n}, a \neq 0$$

Rational index
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$

kwkang@KMK

Bloom: Remembering

Example

Evaluate each of the following without using calculator.

(a) $\frac{2}{27^3}$ (b) $\frac{5^5 \times 25^3}{125^4}$

Bloom: Understanding

(a)
$$27^{\frac{2}{3}} = (3^3)^{\frac{2}{3}}$$

= $3^{3\times\frac{2}{3}}$
= 3^2
= 9

(b)
$$\frac{5^5 \times 25^3}{125^4} = \frac{5^5 \times (5^2)^3}{(5^3)^4}$$

 $= \frac{5^5 \times 5^6}{5^{12}}$
 $= 5^{5+6-12}$
 $= 5^{-1}$
 $= \frac{1}{5}$

kwkang@KMK

Surds

Conjugate surds

$$\sqrt{a} + \sqrt{b}$$
 and $\sqrt{a} - \sqrt{b}$ are conjugate surds.

Product of a pair of conjugate surds is a rational number

$$\left(\sqrt{a} + \sqrt{b}\right)\left(\sqrt{a} - \sqrt{b}\right) = \left(\sqrt{a}\right)^2 - \left(\sqrt{b}\right)^2 = a - b \in Q$$

Bloom: Remembering

Surds

Operations on surds

1.
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

2.
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

3.
$$\sqrt{a} \times \sqrt{a} = (\sqrt{a})^2 = a$$

$$4. \quad m \times n\sqrt{a} = mn\sqrt{a}$$

5.
$$m\sqrt{a} + n\sqrt{a} = (m+n)\sqrt{a}$$

$$6. m\sqrt{a} - n\sqrt{a} = (m-n)\sqrt{a}$$

Bloom: Remembering

Surds

Rationalising denominators

Division by surds of the form
$$\frac{b}{\sqrt{a}}$$
 can be simplified by multiplying it with $\frac{\sqrt{a}}{\sqrt{a}}$ (writing 1 as $\frac{\sqrt{a}}{\sqrt{a}}$).

Also known as process of eliminating the surd in the denominator of a fraction.

Bloom: Remembering

Example

- (1) Simplify (a) $\sqrt{20}$ (b) $13 \times 2\sqrt{2}$ (2) Express $\sqrt{75} + 4\sqrt{3}$ in the form of $a\sqrt{b}$.
- (3) Simplify $(7\sqrt{2}+11\sqrt{3})+(3\sqrt{2}-5\sqrt{3})$.

(4) Express $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ with a rational denominator.

Bloom: Understanding

(1) (a) $\sqrt{20} = \sqrt{4 \times 5}$ $=\sqrt{4}\times\sqrt{5}$ $=2\times\sqrt{5}$ $=2\sqrt{5}$ (b) $13 \times 2\sqrt{2} = (13 \times 2)\sqrt{2}$ $=26\sqrt{2}$

(2) $\sqrt{75} + 4\sqrt{3}$ $=\sqrt{25\times3}+4\sqrt{3}$ $=\sqrt{25}\times\sqrt{3}+4\sqrt{3}$ $=5\sqrt{3}+4\sqrt{3}$ $=(5+4)\sqrt{3}$ $=9\sqrt{3}$

kwkang@KMK

(3) $(7\sqrt{2}+11\sqrt{3})+(3\sqrt{2}-5\sqrt{3})$ $=7\sqrt{2}+11\sqrt{3}+3\sqrt{2}-5\sqrt{3}$ $=(7\sqrt{2}+3\sqrt{2})+(11\sqrt{3}-5\sqrt{3})$ $=10\sqrt{2}+6\sqrt{3}$

kwkang@KMK

(4)
$$\frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{4+2\sqrt{3}}{2}$$

$$= \frac{(\sqrt{3})^2 + 2\sqrt{3}+1}{(\sqrt{3})^2 - 1^2} = 2 + \sqrt{3}$$

$$= \frac{3+2\sqrt{3}+1}{3-1}$$

kwkang@KMK

Important results

1.
$$a^{\log_a b} = b$$

2.
$$\log_a 1 = 0$$

$$\log_a a = 1$$

3

5. $\log 10 = 1$

6. $\ln e = 1$

Bloom: Remembering

Logarithms

Laws of logarithms

1.
$$\log_a MN = \log_a M + \log_a N$$

2. $\log_a \frac{M}{N} = \log_a M - \log_a N$
3. $\log_a MN = \log_a M - \log_a N$

$$\log_a M^N = N \log_a M$$

Learning Tip: If $\log x = \log y$, then x = y.

kwkang@KMK

Bloom: Remembering

Example

- (1) Express $\log xyz^2$ in terms of $\log x$, $\log y$ and $\log z$.
- (2) Evaluate $\log_2 128$.
- (3) Express $\log_a 3xy 5\log_a y + 2$ as a single logarithm.
- (4) Calculate the value of $\log_4 30$.

kwkang@KMK

(1) $\log xyz^2 = \log x + \log y + \log z^2$ $= \log x + \log y + 2\log z$ (2) $\log_2 128 = \log_2 2^7$ $=7\log_{2} 2$ $=7 \times 1$ =7

kwkang@KMK

kwkang@KMK

Self-check

(1) By using the rules of indices, evaluate

$$\left(\sqrt{3}\right)^3 \times 27^{\frac{1}{4}} \times 3^{-\frac{1}{4}}$$

(2) Simplify (a) $\sqrt{\frac{49}{100}}$ (b) $5\sqrt{3} \times 8\sqrt{3}$

(3) Express $25\sqrt{7} - 6\sqrt{63}$ in the form of $a\sqrt{b}$.

kwkang@KMK

Bloom: Applying

Self-check

(4) Simplify
$$(18\sqrt{10} - 6\sqrt{7}) - (9\sqrt{10} + 13\sqrt{7})$$
.

(5) Express $\frac{8\sqrt{5}-\sqrt{2}}{\sqrt{5}+2\sqrt{2}}$ with a rational

denominator.

kwkang@KMK

Bloom: Applying

Self-check

(6) Express $\log \sqrt{\frac{y}{xz}}$ in term of $\log x$, $\log y$ and $\log z$. (7) Evaluate $\log_{6} 48 - 2\log_{6} 2 + \log_{6} 3$. (8) If $\frac{1}{2}\log_{2} p = 3 - \log_{2} q$, show that $pq^{2} = 64$.

(9) Calculate the of $\log_{81} 3$ without using calculator. Bloom: Applying

Answer Self-check

(1) 9

(2) (a) $\frac{7}{10}$ (b) 120 (3) $7\sqrt{7}$

(4) $9\sqrt{10} - 19\sqrt{7}$

kwkang@KMK

Bloom: Applying

Answer Self-check

(5)
$$\frac{17\sqrt{10} - 44}{3}$$

(6) $\frac{1}{2}(\log y - \log x - \log z)$
(7) 2
(9) $\frac{1}{4}$

kwkang@KMK

Bloom: Applying

Key Terms

- Indeces
- Zero index
- Negative index
- Rational index
- Surd
- Rationalising denominators
- Conjugate surds
- Logarithms