Chapter 2: Equations, Inequalities and Absolute Values

2.2 Inequalities

2.3 (c) Solve absolute inequalities

Prepared by: kwkang

Learning Outcomes

- 2.2 (a) Relate the properties of inequalities.
 (b) Find the linear inequalities.
 (c) Find the quadratic inequalities by algebraic or graphical approach.
 (d) Find the rational inequalities involving linear expression.
- 2.3 (c) Solve absolute inequalities.

kwkang@KMK

Linear Inequalities

Step of Solving Linear Inequalities

Step 1: Solve directly.

kwkang@KMK

Example

Solve the following inequalities. (a) $11-2x \le 3(x+2)$

(b) $x - 20 \le 3x - 8 < 4$

Bloom: Understanding

kwkang@KMK

(a)
$$11-2x \le 3(x+2)$$

 $11-2x \le 3x+6$ Expanding the right hand side (RHS)
 $11-6 \le 3x+2x$ Collecting the x terms and the
constant terms
 $5 \le 5x$ Finish solving by isolating the
 $1 \le x$
 $x \ge 1$
 \therefore Interval is $[1,\infty)$.

kwkang@KMK

(b) $x - 20 \le 3x - 8 < 4$

Separate the inequality into two inequalities

$x-20\leq 3x-8$	and	3x - 8 < 4
$8-20 \le 3x - x$		3x < 4 + 8
-12 < 2x		3x < 12
<u>-</u>		<i>x</i> < 4

 \therefore The interval is [-6, 4).

kwkang@KMK

Non-Linear Inequalities

Steps of Solving Non-Linear Inequalities (quadratic inequalities or rational inequalities)

Step 1: Rearrange Right Hand Side (RHS) equal to ZERO.
Step 2: Try to factorize till simplest form.
Step 3: Use TABLE OF SIGN to determine the answer in solution set or interval form.

kwkang@KMK

Example

Solve the inequality of $x^2 < 9$. Solution:

- $x^{2} < 9$ $x^{2} - 9 < 0$ (x + 3)(x - 3) < 0
- x + 3 > 0 and x 3 > 0

Rearrange RHS=0 Factorize till simplest form Assuming both factors are positive

kwkang@KMK

Table of sign

	<i>x</i> < -3	-3 < x < 3	<i>x</i> > 3
<i>x</i> + 3	-	+	+
<i>x</i> – 3	-	-	+
	+	(-)	+

Final answer is positive or negative depends on the step before Assuming both factors are positive

$$(x+3)(x-3) < 0$$
 Less than zero, so circle -

 \therefore Solution set is $\{x: -3 < x < 3\}$.

kwkang@KMK

Example

Solve the inequality of $\frac{6}{x} > 5 - x$. Solution:

kwkang@KMK

Rewrite in the general form

Factorize till simplest form

Assuming all the factors are positive

kwkang@KMK

Table of sign

	<i>x</i> <0	0 < <i>x</i> < 2	2 < x < 3	<i>x</i> > 3
x	-	+	+	+
x-2	-	-	+	+
x-3	-	-	-	+
	-	+	-	+

Final answer is positive or negative depends on the step before Assuming all factors are positive

$$\frac{(x-2)(x-3)}{x}$$
 Greater than zero, so circle +

 $\therefore \text{ Solution set is } \{x: 0 < x < 2 \cup x > 3\}.$

kwkang@KMK

One Side Modulus Inequalities

Steps of Solving One Side Modulus Inequalities

Step 1: Rearrange the inequality in the general form.|x| < a, |x| > a, $|x| \le a$, $|x| \ge a$ Step 2: Eliminate the modulus by using definition.Step 3: Rearrange Right Hand Side (RHS) equal to ZERO.Step 4: Try to factorize till simplest form.Step 5: Use TABLE OF SIGN to determine the answer in solution set or interval form.

kwkang@KMK

One Side Modulus Inequalities

Definition of modulus inequalities

Inequality	Equivalent form	Representation
x > a	x > a or $x < -a$	-a a
$ x \ge a$	$x \ge a$ or $x \le -a$	-a a
<i>x</i> < <i>a</i>	-a < x < a	-a a
$ x \leq a$	$-a \le x \le a$	-a a

kwkang@KMK

Example

Solve the following inequalities.

(a)
$$|x - 3| < 1$$

(b) $|2x + 5| \ge 7$

(c)
$$\left|\frac{2x-3}{x-1}\right| \le 2$$

kwkang@KMK

(a)
$$|x - 3| < 1$$

 $-1 < x - 3 < 1$

Eliminating modulud by using definition.

-1 + 3 < x < 1 + 32 < x < 4

Adding 3 to both sides.

The solution set is $\{x: 2 < x < 4\}$

kwkang@KMK

kwkang@KMK

(c)
$$\left|\frac{2x-3}{x-1}\right| \le 2$$

$$-2 \leq \frac{2x-3}{x-1} \leq 2$$

Eliminating modulus by using definition.

$$-2 \le \frac{2x-3}{x-1}$$
 and $\frac{2x-3}{x-1} \le 2$ ineq

Writing double inequality as two inequalities.

kwkang@KMK

1. Solving the first inequality:

$$-2 \leq \frac{2x-3}{x-1}$$
$$\frac{2x-3}{x-1} + 2 \geq 0$$
$$\frac{2x-3+2x-2}{x-1} \geq 0$$
$$\frac{4x-5}{x-1} \geq 0$$

Rearranging RHS=0

Combining into a single fraction.

Simplifying the numerator.

kwkang@KMK

 $4x-5\geq 0, \qquad x-1>0$

Assuming all factors greater than zero. $x - 1 \neq 0$ as it is denominator.

$$x \ge \frac{5}{4}$$
, $x > 1$

Table of sign

	<i>x</i> < 1	$1 < x < \frac{5}{4}$	$x \ge \frac{5}{4}$
4x - 5	-	+	+
<i>x</i> – 1	-	_	+
	+	-	+

kwkang@KMK

Circle the positive sign or negative sign depend on the inequality before assuming all factors greater than zero.

The inequality sign greater and equal to zero, circle positive sign in the table.

$$\therefore The solution set is \left\{ x \colon x < 1 \cup x \ge \frac{5}{4} \right\}$$

kwkang@KMK

Two Sides Modulus Inequalities

Steps of Solving Two Sides Modulus Inequalities

Step 1: Squaring both sides of the inequality.

- **Step 2:** Using the property of $(|a|)^2 = a^2$.
- **Step 3:** Expanding both sides.
- **Step 4:** Rearrange Right Hand Side (RHS) equal to **ZERO**.

Step 5: Try to factorize till simplest form.

Step 6: Use TABLE OF SIGN to determine the answer in solution set or interval form.

kwkang@KMK

Example

- Solve the inequality |x + 5| > |3x + 3|.
- $\frac{Solution:}{|x+5| > |3x+3|} (|x+5|)^2 > (|3x+3|)^2$

 $(x+5)^2 > (3x+3)^2$

Squaring both sides of the inequality.

Using the property of $(|a|)^2 = a^2$.

 $x^2 + 10x + 25 > 9x^2 + 18x + 9$

Expanding both sides.

kwkang@KMK

 $8x^2 + 8x - 16 < 0$ Rearranging RHS=0 $x^2 + x - 2 < 0$ Simplifying by dividing by 8.(x + 2)(x - 1) < 0Factorizing till simplest form.x + 2 > 0 or x - 1 > 0Assuming all the factors are positivex > -2 or x > 1

Table of sign

	<i>x</i> < -2	-2 < x < 1	<i>x</i> >1
<i>x</i> + 2	-	+	+
<i>x</i> – 1	-	-	+
	+	$\overline{}$	+

:. The solution set is $\{x: -2 < x < 1\}$.

kwkang@KMK

Self-check

(1) Solve the following inequalities. Give your answer in the interval notation.

(a) $3x + 1 \le 5x - 9$

(b) 5x - 14 < 2x + 13 < 3(x - 2) + 25

(2) Solve the following inequalities. Give your answer in the solution set. (a) 1 = 1

(a)
$$x^2 - 4x < 5$$
 (b) $\frac{1}{2x - 1} \le \frac{1}{2}$

kwkang@KMK

Bloom: Applying

Self-check

(3) Solve each of the following inequalities.

(a)
$$|3x+7| \ge 2x+9$$

(b) $\left|\frac{x+3}{x-2}\right| < \frac{1}{2}$

(4) Determine the solution set for the inequality $|x + 5| \le |3x - 1|$.

kwkang@KMK

Bloom: Applying

Answer Self-check

- (1) (a) $[5,\infty)$ (b) (-6,9)(c) (-6,9) (b) (-6,9)
- (2) (a) (-1,5) (b) $\left(-\infty,\frac{1}{2}\right) \cup \left[\frac{3}{2},\infty\right)$

(3) (a)
$$\left(-\infty, -\frac{16}{5}\right] \cup [2, \infty)$$
 (b) $\left(-8, -\frac{4}{3}\right)$

(4) $(-\infty, -1] \cup [3, \infty)$

kwkang@KMK

Bloom: Applying

Summary

kwkang@KMK

Key Terms

- Linear inequality
- Quadratic inequality
- Rational inequality
- One side modulus inequality
- Two sides modulus inequality
- Table of sign
- Solution set
- Interval notation

kwkang@KMK