Chapter 3: Sequences and Series

3.1 Sequences and series

Prepared by: kwkang

Learning Outcomes

(a) Write \boldsymbol{n} th term of simple sequences and series.
(b) Find the nth term of arithmetic sequence and series, $T_{n}=a+(n-1) d$ use the sum formula, $s_{n}=\frac{n}{2}[2 a+(n-1) d]$ and $s_{n}=\frac{n}{2}(a+l)$.
(c) Find the nth term of geometric sequences
and series, $T_{n}=a r^{n-1}$ and use the sum formula, $s_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ for $r \neq 1$.

Sequences and series

Sequences

- A sequence is a set of numbers occurring in a definite order. The numbers are produced according to a particular rule. Example: (i) 1,3,5,7 (finite sequence)
(ii) $1,3,5,7, \ldots$ (infinite sequence)
- Each member of a sequence is called a term.

Series

- A series is the sum of the terms of a sequence.
Example: (i) $1+3+5+7 \quad$ (finite series)
(ii) $1+3+5+7+\cdots$ (infinite series)
kwkang@KMK

Example

\boldsymbol{n} th term of simple sequences
Example 1: Write the general term for the finite sequence.

$$
2,4,8,16
$$

Solution:

$$
\begin{aligned}
& a_{1}=2^{1}=2 \\
& a_{2}=2^{2}=4 \\
& a_{3}=2^{3}=8 \\
& a_{4}=2^{4}=16 \\
& \therefore a_{n}=2^{n}
\end{aligned}
$$

Arithmetic Series

$$
a, a+d, a+2 d, \ldots, a+(n-1) d
$$

where a is the first term and d is common difference
\boldsymbol{n} th term of an arithmetic sequence

$$
T_{n}=a+(n-1) d
$$

Sum to \boldsymbol{n} term of an arithmetic sequence

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad \text { or } \quad S_{n}=\frac{n}{2}(a+l)
$$

where l is the last term.

Example

1. Find the \boldsymbol{n} th term of the arithmetic sequence 8, 12, 16, ...
2. The $3^{\text {rd }}$ term of an arithmetic sequence is 16 and the $13^{\text {th }}$ term is 46 . Find the first term and the common difference.
3. The $7^{\text {th }}$ term of an arithmetic sequence is five times the second term. The two terms differ by 20 . Find the first term and the common difference.

Example

4. Find the sum of the arithmetic series.

$$
3+5+7+9+\ldots+41
$$

5. Given that the $1^{\text {st }}$ and $18^{\text {th }}$ terms of an arithmetic progression are 2 and 53 respectively, find the $90^{\text {th }}$ term and the sum of the first 50 terms.
6. How many terms of the arithmetic series
$\mathbf{1}+\mathbf{2}+\mathbf{3 + 4}+\ldots$ required to make a sum of 210?

Solution

1. $a=8, d=-4$

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
T_{n} & =(8)+(n-1)(-4) \\
& =12-4 n
\end{aligned}
$$

2. $T_{3}=16, T_{13}=46$,

$$
T_{n}=a+(n-1) d
$$

$$
\begin{equation*}
a+(2 d)=16 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a+(12 d)=46 \tag{2}
\end{equation*}
$$

$$
(2)-(1): \quad 10 d=30
$$

$$
\therefore \boldsymbol{d}=\mathbf{3}
$$

Using the nth term formula.

Using the nth term formula.
kwkang@KMK

Solution (continue...)

From (1): when $d=3$,

$$
\begin{array}{r}
a+(2(3))=16 \\
a=10
\end{array}
$$

Therefore the first term is 10 and the common difference is 3.
3. $T_{7}=5 T_{2}$

$$
\begin{align*}
a+6 d & =5[a+d] \\
d & =4 a \quad \ldots \tag{1}
\end{align*}
$$

$$
T_{7}-T_{2}=20
$$

$$
a+6 d-(a+d)=20
$$

$$
5 d=20
$$

$\therefore \boldsymbol{d}=4$
Substitute $d=4$ into (1):
(4) $=4 a$
$\therefore a=1$
Therefore the first term is 1 and the common difference is 4 .

Solution (continue...)

4. Let $T_{n}=41, a=3, d=2$

$$
\begin{gathered}
T_{n}=a+(n-1) d \\
3+(n-1) 2=41 \\
n=20 \\
S_{n}=\frac{n}{2}(a+l) \\
S_{20}=\frac{20}{2}(3+41) \\
=440
\end{gathered}
$$

Using the nth term formula.

Using the sum formula.

Solution (continue...)

5. Given $a=2, T_{18}=53$

$$
\begin{aligned}
& \quad \begin{aligned}
2+(18-1) d=53 \\
d=3
\end{aligned} \\
& \text { Then } \begin{array}{r}
T_{90}=2+(90-1)(3) \\
=269
\end{array} \\
& \qquad \begin{aligned}
S_{50}= & \text { Using the } n \text {th term formula. } \\
= & {[2(2)+(50-1)(3)] \quad \text { Using the sum formula. } }
\end{aligned}
\end{aligned}
$$

Solution (continue...)

6. Given $S_{n}=210$

$$
\begin{array}{rlrl}
\frac{n}{2}[2+(n-1)(1)] & =210 & & \text { Using the sum formula. } \\
n(n+1) & =420 & & \\
n^{2}+n-420 & =0 & & \text { Expanding and rearranging RHS=0. } \\
(n+21)(n-20) & =0 & & \text { Factorizing quadratic equation. } \\
n=-21, n=20 & &
\end{array}
$$

n represents the number of terms, so it should be a natural number. Therefore $\boldsymbol{n}=\mathbf{2 0}$.

Geometric Series

$$
a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1}, \ldots
$$

where a is the first term and d is common ratio.
\boldsymbol{n} th term of an geometric sequence

$$
T_{n}=a r^{n-1}
$$

Sum to \boldsymbol{n} term of a geometric progression

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \text { where } r \neq 1
$$

Example

1. Write down the nth term of the geometric sequence $\mathbf{2 , 4 , 8 , 1 6}, \ldots$.
2. Find the first term and common ratio of a geometric sequence, given that the sixth term is 486 and the third term is 18.
3. Find the numbers of terms in the geometric sequence 1, 2, 4, 8,....., 131072

Example

4. Find the sum of the first nine terms of the geometric sequence $\mathbf{2 , 6 , 1 8}, 54, \ldots$
5. Find the sum of the first twelve terms of a geometric sequence that has a first term of $\frac{\mathbf{1}}{\mathbf{9}}$ and an $8^{\text {th }}$ term of 243.
6. How many terms of sequence $1,2,4,8, \ldots . .$. are required to give a sum of 16383 ?

Solution

1. $a=2, r=2$

$$
\begin{aligned}
T_{n} & =a r^{n-1} \\
T_{n} & =(2)(2)^{n-1} \\
& =2^{n}
\end{aligned}
$$

2. $T_{6}=a r^{5}=486$ \qquad

$$
\begin{equation*}
T_{3}=a r^{2}=18 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\frac{(1)}{(2)}: \quad \frac{a r^{5}}{a r^{2}} & =\frac{486}{18} \tag{2}\\
r^{3} & =27 \\
r & =3
\end{align*}
$$

kwkang@KMK

Using the nth term formula.

Using the nth term formula.

From (2): when $r=3$,

$$
\begin{gathered}
a(3)^{2}=18 \\
a=2
\end{gathered}
$$

Bloom: Understanding

Solution (Continue...)

3. $a=1, r=2, T_{n}=131072$

$$
\begin{aligned}
& T_{n}=a r^{n-1} \\
& 131072=(1)(2)^{n-1} \\
& 131072=2^{n-1} \\
& \log _{10} 131072=\log _{10} 2^{n-1} \\
& n-1=\frac{\log _{10} 131072}{\log _{10} 2} \\
& n-1=17 \\
& n=18
\end{aligned}
$$

Using the nth term formula.

Taking logarithms of both sides of the equation.

So, the sequence has 18 terms.
kwkang@KMK

Solution (Continue...)

4. $a=2, r=3, n=9$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad \text { Using the sum to } n \text {th term formula. } \\
& S_{9}=\frac{2\left(1-(3)^{9}\right)}{1-(3)} \\
& S_{9}=19682
\end{aligned}
$$

Solution (Continue...)

5.

$$
a=\frac{1}{9}, T_{8}=243
$$

Using the nth term formula,

$$
\begin{aligned}
T_{8} & =243 \\
a r^{7} & =243 \\
\frac{1}{9} r^{7} & =243 \\
r^{7} & =2187 \\
r & =3
\end{aligned}
$$

Using the sum to nth term formula,

$$
\begin{aligned}
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
S_{12} & =\frac{\frac{1}{9}\left(1-(3)^{12}\right)}{1-(3)} \\
S_{12} & =\frac{265720}{9}
\end{aligned}
$$

kwkang@KMK

Solution (Continue...)

6. $a=1, r=2, S_{n}=16383$ Using the sum to nth term formula,

$$
\begin{aligned}
16383 & =\frac{a\left(1-r^{n}\right)}{1-r} \\
16383 & =\frac{1\left(1-2^{n}\right)}{1-2} \\
-16383 & =\left(1-2^{n}\right) \\
2^{n} & =16384
\end{aligned}
$$

Taking logarithms of both sides of the equation,

$$
\begin{aligned}
\log 2^{n} & =\log 16384 \\
n \log 2 & =\log 16384 \\
n & =\frac{\log 16384}{\log 2} \\
n & =14
\end{aligned}
$$

Bloom: Understanding

Self-check

(1) Find the nth term of the following sequences.
(a) $3,6,9,12, \ldots$
(b) $3,9,27,81, \ldots$
(2) Write down the nth term of $-6,-4,-2, \ldots$.
(3) The $4^{\text {th }}$ term of an arithmetic sequence is -5 and the $15^{\text {th }}$ term is -49 . Find the first term and the common difference.

Self-check

(4) The $9^{\text {th }}$ term of an arithmetic sequence is six times the fourth term. The two terms differ by 25 . Find the first term and the common difference.
(5) Find the sum of $\mathbf{8 0}+\mathbf{7 5}+\mathbf{7 0}+\ldots-\mathbf{1 0}$.
(6) Given that the $2^{\text {nd }}$ and $20^{\text {th }}$ terms of an arithmetic progression are -5 and -41 respectively, find the $80^{\text {th }}$ term and the sum of the first 40 terms.

Self-check

(7) How many terms of the arithmetic series $2+4+6+8 \ldots$ required to make a sum of 3080?
(8) Write down the nth term of $\frac{1}{4}, \frac{1}{2}, 2, \ldots$.
(9) In a geometric sequence with positive terms, the third term is $\frac{1}{4}$ and the seventh term is $\frac{1}{64}$. Find the first term and the common ratio.

Self-check

(10) Find the number of terms in the geometric sequence 1,1.1,1.21,..., 1.771561 .
(11) Find the sum of the first eleven terms of $3,6,12,24, \ldots$.
(12) Find the sum of the first nine terms of a geometric sequence that has a fourth term of $-\frac{1}{8}$ and a seventh term of $\frac{1}{512}$.

Self-check

(13) How many terms of the sequence $\mathbf{1 2 5}, \mathbf{2 5}, 5,1, \ldots$ are required to give a sum of $\frac{97656}{625}$.

Answer Self-check

(1) (a) $3 n$
(b) 3^{n}
(2) $T_{n}=-8+2 n$
(3) $a=7, d=-4$
(4) $a=-10, d=5$
(5) 665
(6) , $T_{\mathbf{8 0}}=-161 \quad S_{40}=-1680$
(7) 55

Answer Self-check

(8) $T_{n}=2^{n-3}$
(9) $a=1, r=\frac{1}{2}$
(10) 7
(11) 6141
(12) $\frac{52429}{8192}$
(13) $n=8$
kwkang@KMK

HOTS

Question:

The sum of three numbers in a particular arithmetic sequence is 3 and their product is
-15 . Then, find the numbers that satisfied the sequence.

HOTS

Solution:

Let the sequence represented by a, b, c
So, we write $b-a=c-b$

$$
2 b=a+c \ldots(1) \quad \text { Rearranging equation }
$$

The sum of 3 numbers,

$$
a+b+c=3
$$

The product of 3 numbers,

$$
a b c=-15 \ldots \text { (3) }
$$

kwkang@KMK

HOTS

From (2): $\quad(a+c)+b=3$....(4) Rearranging equation Substitute (1) into (4):

$$
\begin{aligned}
(2 b)+b & =3 \\
b & =1
\end{aligned}
$$

Substitute $b=1$ into (2) \& (4):

$$
\begin{aligned}
& a+c=2 \\
& c=2-a \ldots . .(5) \\
& a c=-15 \ldots .(6)
\end{aligned}
$$

Rearranging equation

HOTS

Substitute (5) into (6):

$$
\begin{aligned}
a(2-a) & =-15 \\
a^{2}-2 a-15 & =0 \\
(a-5)(a+3) & =0 \\
a=5 \quad \text { or } a & =-3
\end{aligned}
$$

From (5):

$$
\begin{aligned}
& c=2-(5)=-3 \\
& c=2-(-3)=5
\end{aligned}
$$

Therefore, the sequence could be either $5,1,-3$ or $-3,1,5$.
kwkang@KMK

Summary

Sequences and Series

Arithmetic series

Geometric series

$$
\begin{aligned}
& T_{n}=a+(n-1) d \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{n}=\frac{n}{2}(a+l)
\end{aligned}
$$

$$
\begin{aligned}
& T_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

Key Terms

- Sequences
- Series
- Arithmetic series
- Geometric series
- Common difference
- Common ratio
kwkang@KMK

