Chapter 3: Sequences and Series

3.1 Sequences and series

Prepared by: kwkang

Learning Outcomes

- (a) Write *n* th term of simple sequences and series.
- (b) Find the *n*th term of arithmetic sequence and series, $T_n = a + (n - 1)d$ use the sum formula, $S_n = \frac{n}{2}[2a + (n - 1)d]$ and $S_n = \frac{n}{2}(a + l)$. (c) Find the *n*th term of geometric sequences and series, $T_n = ar^{n-1}$ and use the sum formula, $S_n = \frac{a(1 - r^n)}{1 - r}$ for $r \neq 1$.

kwkang@KMK

Sequences and series

Sequences

- A sequence is a set of numbers occurring in a definite order. The numbers are produced according to a particular rule.
 Example: (i) 1, 3, 5, 7 (finite sequence) (ii) 1, 3, 5, 7, ... (infinite sequence)
- Each member of a sequence is called a term.

Series

A series is the sum of the terms of a sequence.
 Example: (i) 1+3+5+7 (finite series)
 (ii) 1+3+5+7+... (infinite series)

kwkang@KMK

Bloom: Remembering

Example

n th term of simple sequences

Example 1: Write the general term for the finite sequence. 2, 4, 8, 16

Solution:

$$a_1 = 2^1 = 2$$

 $a_2 = 2^2 = 4$
 $a_3 = 2^3 = 8$
 $a_4 = 2^4 = 16$
 $\therefore a_n = 2^n$

kwkang@KMK

Arithmetic Series

$$a, a + d, a + 2d, \dots, a + (n-1)d$$

where a is the first term and d is common difference

n th term of an arithmetic sequence

$$T_n = a + (n-1)d$$

Sum to *n* term of an arithmetic sequence $S_n = \frac{n}{2} [2a + (n-1)d]$ or $S_n = \frac{n}{2} (a+l)$ where *l* is the last term.

kwkang@KMK

Bloom: Remembering

Example

- Find the *n* th term of the arithmetic sequence
 8, 12, 16, ...
- The 3rd term of an arithmetic sequence is 16 and the 13th term is 46. Find the first term and the common difference.
- The 7th term of an arithmetic sequence is five times the second term. The two terms differ by 20. Find the first term and the common difference.

kwkang@KMK

Example

4. Find the sum of the arithmetic series. 3 + 5 + 7 + 9 + ... + 41

- Given that the 1st and 18th terms of an arithmetic progression are 2 and 53 respectively, find the 90th term and the sum of the first 50 terms.
- 6. How many terms of the arithmetic series
 1+2+3+4+ ...required to make a sum of
 210?
 kwkang@KMK

Solution

1.
$$a = 8, d = -4$$

 $T_n = a + (n - 1)d$
 $T_n = (8) + (n - 1)(-4)$
 $= 12 - 4n$

Using the *n*th term formula.

2.
$$T_3 = 16$$
, $T_{13} = 46$,
 $T_n = a + (n - 1)d$
 $a + (2d) = 16$ (1)
 $a + (12d) = 46$ (2)
 $(2) - (1)$: $10d = 30$
 $\therefore d = 3$

kwkang@KMK

Using the *n*th term formula.

From (1): when d = 3, a + (2(3)) = 16a = 10

Therefore the first term is 10 and the common difference is 3.

3.
$$T_7 = 5T_2$$

 $a + 6d = 5[a + d]$
 $d = 4a$ (1)
 $T_7 - T_2 = 20$
 $a + 6d - (a + d) = 20$
 $5d = 20$

 $\therefore d = 4$ Substitute d = 4 into (1): (4) = 4a $\therefore a = 1$

Therefore the first term is 1 and the common difference is 4.

kwkang@KMK

4. Let
$$T_n = 41$$
, $a = 3$, $d = 2$
 $T_n = a + (n - 1)d$
 $3 + (n - 1)2 = 41$
 $n = 20$
 $S_n = \frac{n}{2}(a + l)$
 $S_{20} = \frac{20}{2}(3 + 41)$
 $= 440$

Using the *n*th term formula.

Using the sum formula.

kwkang@KMK

5. Given
$$a = 2, T_{18} = 53$$

 $2 + (18 - 1)d = 53$
 $d = 3$
Then $T_{90} = 2 + (90 - 1)(3)$
 $= 269$
 $S_{50} = \frac{50}{2} [2(2) + (50 - 1)(3)]$ Using the sum formula.
 $= 3775$

kwkang@KMK

6. Given $S_n = 210$ $\frac{n}{2}[2 + (n - 1)(1)] = 210$ Using the sum formula. n(n + 1) = 420 $n^2 + n - 420 = 0$ Expanding and rearranging RHS=0. (n + 21)(n - 20) = 0 Factorizing quadratic equation. n = -21, n = 20

n represents the number of terms, so it should be a natural number. Therefore n = 20.

kwkang@KMK

Geometric Series

 $a, ar, ar^2, ar^3, ..., ar^{n-1}, ...$ where *a* is the first term and *d* is common ratio.

n th term of an geometric sequence $T_n = ar^{n-1}$

Sum to *n* term of a geometric progression $S_n = \frac{a(1-r^n)}{1-r} \text{ where } r \neq 1$

kwkang@KMK

Bloom: Remembering

Example

- 1. Write down the *n*th term of the geometric sequence 2, 4, 8, 16, ...
- 2. Find the first term and common ratio of a geometric sequence, given that the sixth term is 486 and the third term is 18.
- 3. Find the numbers of terms in the geometric sequence 1, 2, 4, 8,....., 131072

Bloom: Understanding

kwkang@KMK

Example

4. Find the sum of the first nine terms of the geometric sequence 2, 6, 18, 54, ...

- 5. Find the sum of the first twelve terms of a geometric sequence that has a first term of $\frac{1}{9}$ and an 8th term of 243.
- 3. How many terms of sequence 1, 2, 4, 8,..... are required to give a sum of 16383?

Solution

1.
$$a = 2, r = 2$$

 $T_n = ar^{n-1}$
 $T_n = (2)(2)^{n-1}$
 $= 2^n$

Using the *n*th term formula.

2.
$$T_6 = ar^5 = 486$$
(1)
 $T_3 = ar^2 = 18$ (2)
 $\frac{(1)}{(2)}: \frac{ar^5}{ar^2} = \frac{486}{18}$
 $r^3 = 27$
 $r = 3$
kwkang@KMK

Using the *n*th term formula.

From (2): when r = 3, $a(3)^2 = 18$ a = 2

3.
$$a = 1, r = 2, T_n = 131072$$

 $T_n = ar^{n-1}$
 $131072 = (1)(2)^{n-1}$
 $131072 = 2^{n-1}$
 $log_{10}131072 = log_{10}2^{n-1}$
 $n - 1 = \frac{log_{10}131072}{log_{10}2}$
 $n - 1 = 17$
 $n = 18$
So, the sequence has 18 terms.

kwkang@KMK

Bloom: Understanding

Taking logarithms of both

sides of the equation.

Using the *n*th term formula.

4.
$$a = 2, r = 3, n = 9$$

 $S_n = \frac{a(1 - r^n)}{1 - r}$
 $S_9 = \frac{2(1 - (3)^9)}{1 - (3)}$
 $S_9 = 19682$

Using the sum to *n*th term formula.

kwkang@KMK

5.
$$a = \frac{1}{9}, T_8 = 243$$

Using the *n*th term formula,
 $T_8 = 243$
 $ar^7 = 243$
 $\frac{1}{9}r^7 = 243$
 $r^7 = 2187$
 $r = 3$

Using the sum to *n*th term formula,

$$S_n = \frac{a(1-r^n)}{1-r}$$
$$S_{12} = \frac{\frac{1}{9}(1-(3)^{12})}{1-(3)}$$
$$S_{12} = \frac{265720}{9}$$

kwkang@KMK

6.
$$a = 1, r = 2, S_n = 16383$$

Using the sum to *n*th term formula,

$$16383 = \frac{a(1 - r^n)}{1 - r}$$
$$16383 = \frac{1(1 - 2^n)}{1 - 2}$$
$$-16383 = (1 - 2^n)$$
$$2^n = 16384$$

Taking logarithms of both sides of the equation, $log2^n = log16384$ nlog2 = log16384 $n = \frac{log16384}{log2}$ n = 14

kwkang@KMK

(1) Find the *n*th term of the following sequences.

- (a) 3, 6, 9, 12, ... (b) 3, 9, 27, 81, ...
- (2) Write down the *n*th term of -6, -4, -2, ...

(3) The 4th term of an arithmetic sequence is -5 and the 15th term is -49. Find the first term and the common difference.

kwkang@KMK

Bloom: Applying

(4) The 9th term of an arithmetic sequence is six times the fourth term. The two terms differ by 25. Find the first term and the common difference.

- (5) Find the sum of 80 + 75 + 70 + ... 10.
- (6) Given that the 2nd and 20th terms of an arithmetic progression are -5 and -41 respectively, find the 80th term and the sum of the first 40 terms.

kwkang@KMK

Bloom: Applying

- (7) How many terms of the arithmetic series
 2 + 4 + 6 + 8 ... required to make a sum of 3080?
- (8) Write down the *n*th term of $\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$.
- (9) In a geometric sequence with positive terms, the third term is $\frac{1}{4}$ and the seventh term is $\frac{1}{64}$. Find the first term and the common ratio.

(10) Find the number of terms in the geometric sequence 1, 1. 1, 1. 21, ..., 1. 771561 .

(11) Find the sum of the first eleven terms of

3, 6, 12, 24,

(12) Find the sum of the first nine terms of a geometric sequence that has a fourth term of $-\frac{1}{8}$ and a seventh term of $\frac{1}{512}$.

Bloom: Applying

kwkang@KMK

(13) How many terms of the sequence 125, 25, 5, 1, ... are required to give a sum of $\frac{97656}{625}$.

Bloom: Applying

Answer Self-check

(1) (a) 3n (b) 3^n (2) $T_n = -8 + 2n$ (3) a = 7, d = -4(4) a = -10, d = 5(5) 665 (6) $T_{80} = -161$ $S_{40} = -1680$ (7) 55

kwkang@KMK

Bloom: Applying

Answer Self-check

(8)
$$T_n = 2^{n-3}$$

(9) $a = 1, r = \frac{1}{2}$
(10) 7
(11) 6141
(12) $\frac{52429}{8192}$
(13) $n = 8$

kwkang@KMK

Bloom: Applying

Question:

The sum of three numbers in a particular arithmetic sequence is 3 and their product is

-15. Then, find the numbers that satisfied the sequence.

Solution:

Let the sequence represented by a, b, cSo, we write b - a = c - b2b = a + c(1) Rearranging equation

The sum of 3 numbers,

a + b + c = 3(2)

The product of 3 numbers,

abc = -15(3)

kwkang@KMK

From (2): (a + c) + b = 3(4) Rearranging equation Substitute (1) into (4): (2b) + b = 3b = 1

Substitute **b**=**1** into (2) & (4):

$$a + c = 2$$

 $c = 2 - a$ (5) Rearranging equation
 $ac = -15$ (6)

kwkang@KMK

Substitute (5) into (6): a(2-a) = -15 $a^2 - 2a - 15 = 0$ (a - 5)(a + 3) = 0 a = 5 or a = -3From (5): c = 2 - (5) = -3c = 2 - (-3) = 5

Therefore, the sequence could be either 5, 1, -3 or -3, 1, 5.

kwkang@KMK

kwkang@KMK

Bloom: Remembering

Key Terms

- Sequences
- Series
- Arithmetic series
- Geometric series
- Common difference
- Common ratio

kwkang@KMK