Chapter 2: Equations, Inequalities and Absolute Values

2.3 Absolute Values

Prepared by: kwkang

Learning Outcomes

2.3 (a) State the properties of absolute values as follows:

 $|a| \ge 0$

ii. |-a| = |a|

iii.
$$|a + b| = |b + a|$$

iv. |a - b| = |b - a|

V. |ab| = |a||b|

vi. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ where $|b| \neq 0$

Learning Outcomes

2.3 (b) Solve absolute equations of these forms: i. |ax + b| = cx + dii. |ax + b| = |cx + d|iii. $|ax^2 + bx + c| = d$

Absolute Values

Properties of absolute values

- i. $|a| \ge 0$
- ii. |-a| = |a|
- iii. |a + b| = |b + a|
- iv. |a b| = |b a|
- **v.** |ab| = |a||b|

vi.
$$\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$$
 where $|b| \neq 0$

kwkang@KMK

Absolute value of a, denoted by |a|.

Bloom: Remembering

Absolute Equation

Types of absolute equation

1. Definition

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

2. Basic definition

 $|x| = a \quad \leftrightarrow \quad x = a \quad and \quad x = -a$

3. Inequalities

Refer Note 2.2 Inequalities

kwkang@KMK

Bloom: Remembering

Example

Solve the following equations.

- (a) |x+3| = 6
- (b) |x+4| = 5x+8
- (C) |2x-9| = |x+3|
- (d) $|x^2 6x + 4| = 4$

Bloom: Understanding

Solution

(a) |x+3| = 6Using basic definition x + 3 = 6 Or x + 3 = -6x = -9 Finish solving by x = 3isolating the variable. |2x - 9| = |x + 3|(b) |x+4| = 5x+8x + 4 = 5x + 8 Or x + 4 = -(5x + 8)**Using basic** definition x + 4 = -5x - 84x = -4

kwkang@KMK

Solution (Continue...)

4x = -4	6x = -12
x = -1	<i>x</i> = −2
Check the answers	
When $x = -1$,	When $x = -2$,
x+4 = (-1)+4 = 3	x+4 = (-2)+4 = 2
5(-1) + 8 = 3	5(-2) + 8 = -2
$\therefore x = -1$ is a solution.	$\therefore x = -2$ is not a solution.

 \therefore The solution is x = -1.

kwkang@KMK

Solution (Continue...)

(C)
$$|2x - 9| = |x + 3|$$

 $(|2x - 9|)^2 = (|x + 3|)^2$ Squaring both sides
 $(2x - 9)^2 = (x + 3)^2$ $|x| = \sqrt{x^2}$
 $4x^2 - 36x + 81 = x^2 + 6x + 9$ Quadratic expansion
 $3x^2 - 42x + 72 = 0$ Rearranging to let RHS=0
 $(3x - 6)(x - 12) = 0$ Factorizing to get
 $x = 2$ or $x = 12$ Values x

kwkang@KMK

Solution (Continue...)

(d)
$$|x^2 - 6x + 4| = 4$$

 $x^2 - 6x + 4 = 4$ Or $x^2 - 6x + 4 = -4$ Definition
 $x^2 - 6x = 0$ $x^2 - 6x + 8 = 0$ Solving to
 $x(x - 6) = 0$ $(x - 4)(x - 2) = 0$ get values
 $x = 0, \quad x = 6$ $x = 4, \quad x = 2$ of x

∴ Solution set {0, 2, 4, 6}.

kwkang@KMK

Self-check

Solve the following equations.

- (a) |4x-3| = 9
- (b) |2x+1| = 4x-3
- (c) |5x+2| = |8x+11|
- (d) $|x^2 4x + 2| = 2$

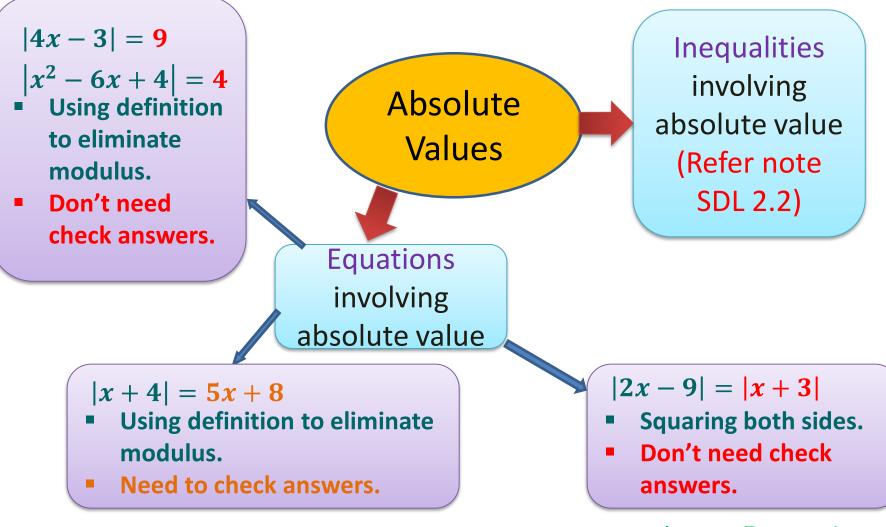
kwkang@KMK

Bloom: Applying

Answer Self-check

(a) x = 3, $x = -\frac{3}{2}$

(b) x = 2


(c) x = -3 or x = -1

(d) $\{0, 2, 4\}.$

kwkang@KMK

Bloom: Applying

Summary

kwkang@KMK

Bloom: Remembering

Key Terms

- Absolute values
- Equations involving absolute value
- Squaring both sides