Chapter 4: Matrices and Systems of Linear Equations

4.2 Determinant of Matrices

Prepared by: kwkang

Learning Outcomes

(a) Find the minors and cofactors of a matrix **Up to 3x3 matrices.*

(b) Find the determinant of a matrix.

*Use basic properties of determinant.

Minors

Minors, M_{ij}

Minors of an element of an 3×3 matrix is determinant by deleting the row and the column containing the element and then finding the determinant of the resulting 2×2 matrix.

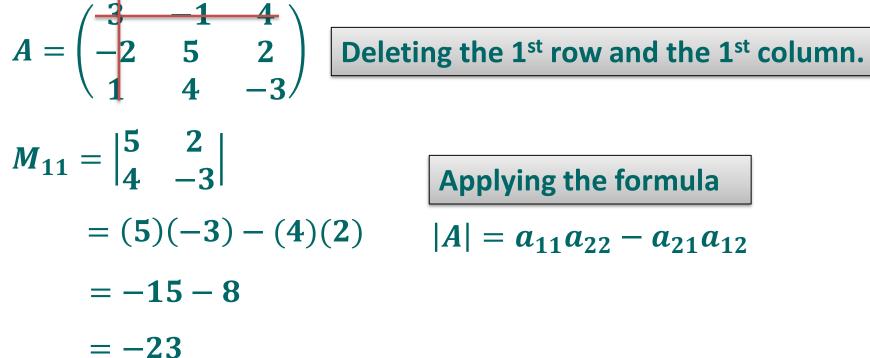
Example:

If
$$A = \begin{pmatrix} 3 & -1 & 4 \\ -2 & 5 & 2 \\ 1 & 4 & -3 \end{pmatrix}$$
, find M_{11} and M_{23} .

kwkang@KMK

Minors

Solution:



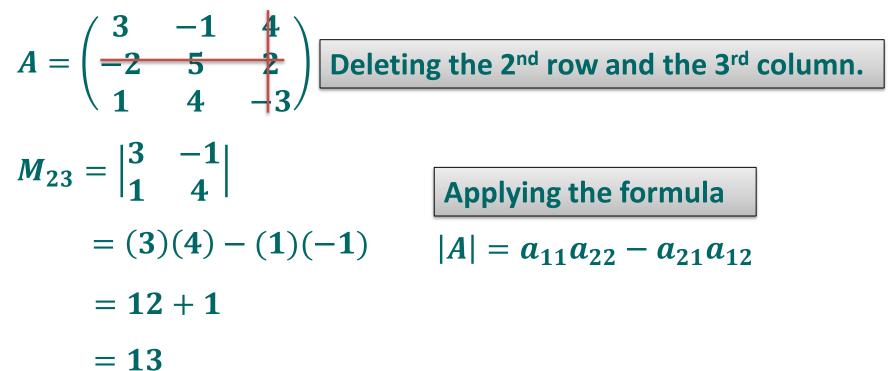
Applying the formula

$$|A| = a_{11}a_{22} - a_{21}a_{12}$$

kwkang@KMK

Minors

Solution:



kwkang@KMK

Cofactors

Cofactors

If A is a square matrix, then the cofactor, denoted by c_{ij} , of the element a_{ij} is given by $c_{ij} = (-1)^{i+j} M_{ij}$.

Learning Tips:

Instead of calculating $(-1)^{i+j}$ for each of minor, the following sign convention can be used to find cofactors of matrices.

$$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

kwkang@KMK

Cofactors

Example:

If
$$A = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 3 & -1 \\ 2 & 1 & -3 \end{pmatrix}$$
, find
(a) c_{12} (b) c_{33}

Solution:

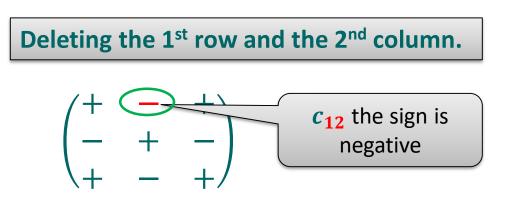
(a)

$$A = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 3 & -1 \\ 2 & 1 & -3 \end{pmatrix}$$

$$c_{12} = (-)M_{12}$$

$$= (-)\begin{vmatrix} -2 & -1 \\ 2 & -3 \end{vmatrix}$$

$$= -8$$



kwkang@KMK Bloom: Remembering

Cofactors

Solution:

= 14

(b)
$$A = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 3 & -1 \\ 2 & 1 & -3 \end{pmatrix}$$
 Deleting the 3rd row and the 3rd column.
 $c_{33} = (+)M_{33}$
 $= (+) \begin{vmatrix} 4 & 1 \\ -2 & 3 \end{vmatrix}$
 $= 12 - (-2)$

kwkang@KMK Bloom: Remembering

Determinant of a 2×2 matrix

If
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, then $|A| = a_{11}a_{22} - a_{21}a_{12}$.

Example:
If
$$A = \begin{pmatrix} 3 & -2 \\ -4 & -1 \end{pmatrix}$$
, find $|A|$.

Solution:

$$|A| = \begin{vmatrix} 3 & -2 \\ -4 & -1 \end{vmatrix}$$

= (3)(-1) - (-4)(-2)
= -11

Applying the formula

 $|A| = a_{11}a_{22} - a_{21}a_{12}$

kwkang@KMK

Determinant of a 3×3 **matrix**

If
$$A = \begin{pmatrix} 4 & 1 & 0 \\ -2 & 3 & -1 \\ 2 & 1 & -3 \end{pmatrix}$$
, then $|A| = a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}$

Learning Tips:

Step 1: Fix any row or column to find determinant.
Step 2: Label the sign according to the sign convention.
Step 3: Draw a bracket and modulus after each sign.
Step 4: Fill in the value of elements in bracket and the elements of minor in modulus then calculate to get determinant.

kwkang@KMK

Example:

Evaluate
$$\begin{vmatrix} 1 & -3 & 2 \\ 3 & 4 & -2 \\ -2 & 0 & 0 \end{vmatrix}$$
.

Solution:

Hint: Choose row or column contains the most zeroes to make computation easier.

$$\begin{vmatrix} 1 & -3 & 2 \\ 3 & 4 & -2 \\ \hline -2 & 0 & 0 \end{vmatrix} = +() \begin{vmatrix} -() \end{vmatrix} + () \begin{vmatrix} +() \end{vmatrix}$$

$$\begin{pmatrix} + & - & + \\ - & + & - & + \end{pmatrix}$$

We expand about the 3rd row with most zeroes. The sign is + - +
Bloom: Remembering

Solution: (Continue...)

$$= +(-2)\begin{vmatrix} -3 & 2 \\ 4 & -2 \end{vmatrix} - (0)\begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} + (0)\begin{vmatrix} 1 & -3 \\ 3 & 4 \end{vmatrix}$$
$$= (-2)(6-8) - 0 + 0$$

Fill in the values of elements in bracket and modulus.

= 4

kwkang@KMK

If a square matrix B is obtained from a square matrix A by multiplying each element of any row or any column of matrix A by a constant k, then |B| = k|A|.

Example:

If
$$A = \begin{pmatrix} 2 & 4 & 0 \\ 1 & -3 & 1 \\ 5 & 2 & 0 \end{pmatrix}$$
 and $|A| = 16$.
$$|B| = \begin{vmatrix} 2 & 4 & 0 \\ 3 & -9 & 3 \\ 5 & 2 & 0 \end{vmatrix} = 3 \begin{vmatrix} 2 & 4 & 0 \\ 1 & -3 & 1 \\ 5 & 2 & 0 \end{vmatrix} = 3(16) = 48$$

kwkang@KMK

If all the elements in a row or a column of a square matrix A are zeroes, then |A| = 0

Example:

$$A = \begin{pmatrix} 2 & 5 & 2 \\ 0 & 0 & 0 \\ 5 & 2 & 1 \end{pmatrix} \quad \therefore \ |A| = 0 \quad \text{All elements in 2^{nd} row are zeroes.}$$
$$B = \begin{pmatrix} 6 & 8 & 0 \\ 2 & 7 & 0 \\ 5 & 1 & 0 \end{pmatrix} \quad \therefore \ |B| = 0 \quad \text{All elements in 3^{rd} column are zeroes.}$$

kwkang@KMK

If any two rows or two columns of a square matrix A are identical, then |A| = 0.

Example:

$$A = \begin{pmatrix} 2 & 5 & 8 \\ 5 & 3 & 9 \\ 2 & 5 & 8 \end{pmatrix} \quad \therefore \ |A| = 0 \quad \text{The 1st and 3rd rows are identical.}$$
$$B = \begin{pmatrix} 4 \\ 2 \\ 6 \\ 9 \end{pmatrix} \quad \frac{4}{2} \begin{vmatrix} 3 \\ 7 \\ 9 \end{pmatrix} \quad \therefore \ |B| = 0 \quad \text{The 1st and 2nd columns are identical.}$$

kwkang@KMK

4. If A is a square matrix, then $|A| = |A^T|$.

Example:

If
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -1 \\ -2 & -1 & 1 \end{pmatrix}$$
 and $|A| = 12$.
$$A^{T} = \begin{pmatrix} 1 & 0 & -2 \\ -1 & 3 & -1 \\ 2 & -1 & 1 \end{pmatrix} \therefore |A^{T}| = |A| = 12$$

kwkang@KMK

If a square matrix B is obtained from a square matrix A by interchanging any two rows or any two columns, then |B| = -|A|.

Example: Given $\begin{vmatrix} a & k & p \\ b & l & q \\ c & m & r \end{vmatrix} = 10$. $\begin{vmatrix} c & m & r \\ b & l & q \\ a & k & p \end{vmatrix} = - \begin{vmatrix} a & k & p \\ b & l & q \\ c & m & r \end{vmatrix} = -10$ Interchanging the 1st row with the 3rd row.

kwkang@KMK

If A is an upper triangular or a lower triangular matrix, then |A| can be obtained by multiplying the elements on the leading diagonal.

Example:

6.



kwkang@KMK

If A and B are two square matrices of the same order, then $|AB| = |A| \times |B|$.

Example:

Given that
$$|A| = \begin{vmatrix} 3 & -2 & 4 \\ 1 & 0 & 0 \\ 5 & 3 & -1 \end{vmatrix} = 10$$
 and
 $|B| = \begin{vmatrix} 1 & 5 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 2 \end{vmatrix} = -2.$
 $\therefore |AB| = |A| \times |B| = (10)(-2) = -20$

kwkang@KMK

Example

(1) Find the determinant of $A = \begin{bmatrix} 3 & 2 \\ 4 & -1 \end{bmatrix}$.

(2) Evaluate |A| if $A = \begin{bmatrix} 3 & 5 & 4 \\ 1 & 3 & 2 \\ -2 & -4 & 5 \end{bmatrix}$. (3) Given $A = \begin{bmatrix} 2 & y & -1 \\ y & 2 & 1 \\ -3 & -1 & 1 \end{bmatrix}$. Find y if |A| = 0.

kwkang@KMK

Solution

(1)
$$|A| = (3)(-1) - (2)(4)$$

= -11

(2) Expand about the 1st row.

$$|A| = +(3) \begin{vmatrix} 3 & 2 \\ -4 & 5 \end{vmatrix} - (5) \begin{vmatrix} 1 & 2 \\ -2 & 5 \end{vmatrix} + (4) \begin{vmatrix} 1 & 3 \\ -2 & -4 \end{vmatrix}$$

$$= 3(15+8) - 5(5+4) + 4(-4+6)$$

$$= 32$$

kwkang@KMK

Solution (Continue...)

(3) Expand about the 1st row.

$$|A| = +(2) \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} - (y) \begin{vmatrix} y & 1 \\ -3 & 1 \end{vmatrix} + (-1) \begin{vmatrix} y & 2 \\ -3 & -1 \end{vmatrix} = 0$$

$$2[(2) - (-1)] - y[y + 3] - [-y + 6] = 0$$

$$y^2 + 2y = 0$$

$$y(y + 2) = 0$$

$$\therefore y = 0 \text{ or } y = -2$$

kwkang@KMK

Self-check

(1) Find the determinant of $A = \begin{bmatrix} -1 & 2 \\ -3 & -4 \end{bmatrix}$.

(2) Evaluate |A| if $A = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 1 & 2 \\ 2 & 5 & 0 \end{bmatrix}$. (3) Given $A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 0 & k \\ -1 & k & 1 \end{bmatrix}$. Find k if |A| = 0.

kwkang@KMK

Bloom: Applying

Answer Self-check

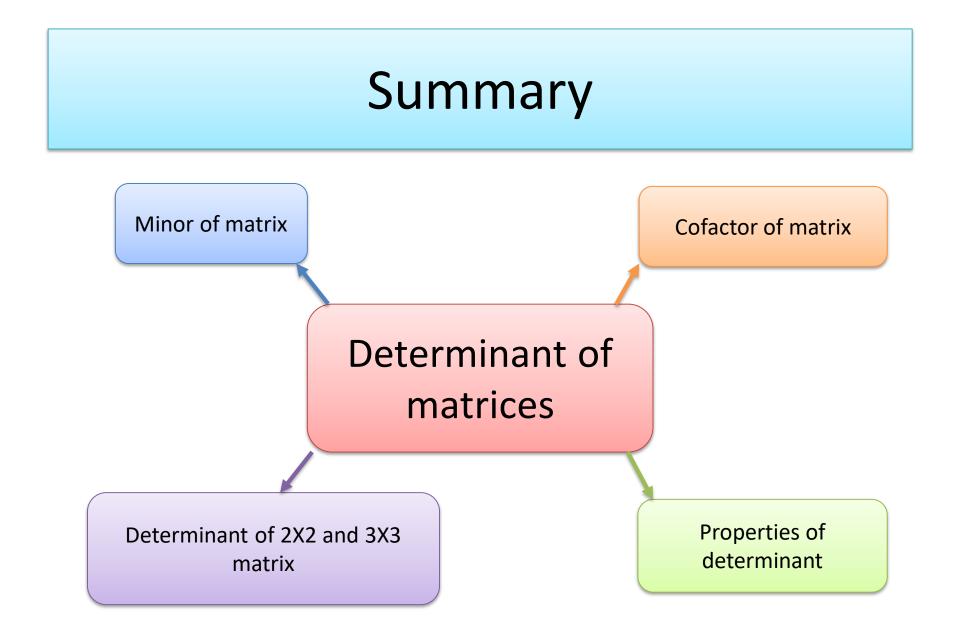
(1) 10

(2) -41

(3) k = -6 or k = -1

kwkang@KMK

Bloom: Applying



kwkang@KMK

Key Terms

- Minor
- Cofactor
- Determinant

