Chapter 4: Matrices and Systems

of Linear Equations

4.2 Determinant of Matrices

Prepared by: kwkang

Learning Outcomes

(a) Find the minors and cofactors of a matrix *Up to 3x3 matrices.
(b) Find the determinant of a matrix. *Use basic properties of determinant.

Minors

Minors, $\boldsymbol{M}_{\boldsymbol{i j}}$

Minors of an element of an 3×3 matrix is determinant by deleting the row and the column containing the element and then finding the determinant of the resulting 2×2 matrix.

Example:

$$
\text { If } A=\left(\begin{array}{ccc}
3 & -1 & 4 \\
-2 & 5 & 2 \\
1 & 4 & -3
\end{array}\right) \text {, find } M_{11} \text { and } M_{23}
$$

Minors

Solution:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
-3 & 1 & 4 \\
-2 & 5 & 2 \\
1 & 4 & -3
\end{array}\right) \\
& \begin{aligned}
M_{11} & =\left|\begin{array}{cc}
5 & 2 \\
4 & -3
\end{array}\right| \\
& =(5)(-3)-(4)(2) \\
& |A|=a_{11} a_{22}-a_{21} a_{12} \\
& =-15-8 \\
& =-23
\end{aligned}
\end{aligned}
$$

Minors

Solution:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
3 & -1 & 4 \\
-2 & 5 & 2 \\
1 & 4 & -3
\end{array}\right) \xrightarrow{\text { Deleting the } 2^{\text {nd }} \text { row and the } 3^{\text {rd }} \text { column. }} \\
& \begin{aligned}
M_{23} & =\left|\begin{array}{cc}
3 & -1 \\
1 & 4
\end{array}\right| \\
& =(3)(4)-(1)(-1) \\
& =12+1 \\
& |A|=a_{11} a_{22}-a_{21} a_{12} \\
& =13
\end{aligned}
\end{aligned}
$$

Cofactors

Cofactors

If A is a square matrix, then the cofactor, denoted by $c_{i j}$, of the element $a_{i j}$ is given by $c_{i j}=(-1)^{i+j} M_{i j}$.

Learning Tips:

Instead of calculating $(-1)^{i+j}$ for each of minor, the following sign convention can be used to find cofactors of matrices.

$$
\left(\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right)
$$

Cofactors

Example:

If $A=\left(\begin{array}{ccc}4 & 1 & 0 \\ -2 & 3 & -1 \\ 2 & 1 & -3\end{array}\right)$, find
(a) c_{12}
(b) c_{33}

Solution:
(a)

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
4 & 1 & 0 \\
-2 & 3 & -1 \\
2 & 1 & -3
\end{array}\right) \\
\boldsymbol{c}_{12} & =(-) M_{12} \\
& =(-)\left|\begin{array}{cc}
-2 & -1 \\
2 & -3
\end{array}\right| \\
& =-8
\end{aligned}
$$

$$
\text { Deleting the } 1^{\text {st }} \text { row and the } 2^{\text {nd }} \text { column. }
$$

Cofactors

Solution:

(b)

$$
\begin{aligned}
A= & \left(\begin{array}{ccc}
4 & 1 & 0 \\
-2 & 3 & -1 \\
2 & 1 & -1
\end{array}\right) \quad \text { Deleting the } 3^{\text {rd }} \text { row and the } 3^{\text {rd }} \text { column. } \\
\boldsymbol{c}_{33} & =(+) M_{33} \\
& =(+)\left|\begin{array}{cc}
4 & 1 \\
-2 & 3
\end{array}\right| \\
& =12-(-2) \\
& =14
\end{aligned}
$$

Determinant of matrices

Determinant of a 2×2 matrix

$$
\text { If } A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \text {, then }|A|=a_{11} a_{22}-a_{21} a_{12}
$$

Example:

$$
\text { If } \quad A=\left(\begin{array}{cc}
3 & -2 \\
-4 & -1
\end{array}\right) \text {, find }|A|
$$

Solution:

$$
\begin{aligned}
|A| & =\left|\begin{array}{cc}
3 & -2 \\
-4 & -1
\end{array}\right| \\
& =(3)(-1)-(-4)(-2) \\
& =-11
\end{aligned}
$$

Applying the formula

$$
|A|=a_{11} a_{22}-a_{21} a_{12}
$$

Determinant of matrices

Determinant of a 3×3 matrix

If $A=\left(\begin{array}{ccc}4 & 1 & 0 \\ -2 & 3 & -1 \\ 2 & 1 & -3\end{array}\right)$, then $|A|=a_{11} c_{11}+a_{12} c_{12}+a_{13} c_{13}$

Learning Tips:

Step 1: Fix any row or column to find determinant.
Step 2: Label the sign according to the sign convention.
Step 3: Draw a bracket and modulus after each sign.
Step 4: Fill in the value of elements in bracket and the elements of minor in modulus then calculate to get determinant.

Determinant of matrices

Example:

Evaluate $\left|\begin{array}{ccc}1 & -3 & 2 \\ 3 & 4 & -2 \\ -2 & 0 & 0\end{array}\right|$.

Solution:

Hint: Choose row or column contains the most zeroes to make computation easier.

Determinant of matrices

Solution: (Continue...)
$\left|\begin{array}{ccc}1 & -3 & 2 \\ 3 & 4 & -2 \\ \bullet-2 & 0 & 0\end{array}\right|$

$$
\begin{aligned}
& =+(-2)\left|\begin{array}{cc}
-3 & 2 \\
4 & -2
\end{array}\right|-(0)\left|\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right|+(0)\left|\begin{array}{cc}
1 & -3 \\
3 & 4
\end{array}\right| \\
& =(-2)(6-8)-0+0 \\
& =4
\end{aligned}
$$

Properties of determinant

If a square matrix B is obtained from a square matrix A by multiplying each element of any row or any column of matrix A by a constant k, then $|B|=k|A|$.

Example:

$$
\begin{aligned}
& \text { If } A=\left(\begin{array}{ccc}
2 & 4 & 0 \\
1 & -3 & 1 \\
5 & 2 & 0
\end{array}\right) \text { and }|A|=16 \\
& |B|=\left|\begin{array}{ccc}
2 & 4 & 0 \\
3 & -9 & 3 \\
5 & 2 & 0
\end{array}\right|=3\left|\begin{array}{ccc}
2 & 4 & 0 \\
1 & -3 & 1 \\
5 & 2 & 0
\end{array}\right|=3(16)=48
\end{aligned}
$$

Properties of determinant

2. If all the elements in a row or a column of a square matrix A are zeroes, then $|A|=0$

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
2 & 5 & 2 \\
0 & 0 & 0 \\
5 & 2 & 1
\end{array}\right) \quad \therefore|A|=0 \\
& B=\left(\begin{array}{lll}
6 & 8 & 0 \\
2 & 7 & 0 \\
5 & 1 & 0
\end{array}\right) \quad \therefore|B|=0
\end{aligned} \begin{aligned}
& \text { All elements in } 2^{\text {nd }} \text { row are zeroes. } \\
&
\end{aligned}
$$

Properties of determinant

33. If any two rows or two columns of a square matrix A are identical, then $|A|=0$.

Example:

$$
\begin{aligned}
& A=\begin{array}{|cc|}
\begin{array}{|ccc}
2 & 5 & 8 \\
5 & 3 & 9 \\
2 & 5 & 8
\end{array}
\end{array} \quad \therefore|A|=0 \quad \text { The } 1^{\text {st }} \text { and } 3^{\text {rd }} \text { rows are identical. } \\
& B=\begin{array}{ll}
4 \\
2 \\
2
\end{array} \\
& \left.\begin{array}{lll}
4 & 3 \\
2 & 7 \\
6
\end{array}\right) \quad \therefore|B|=0 \quad \text { The } 1^{\text {st }} \text { and } 2^{\text {nd }} \text { columns are identical. }
\end{aligned}
$$

Properties of determinant

4. If A is a square matrix, then $|A|=\left|A^{T}\right|$.

Example:

$$
\text { If } \begin{aligned}
A & =\left(\begin{array}{ccc}
1 & -1 & 2 \\
0 & 3 & -1 \\
-2 & -1 & 1
\end{array}\right) \text { and }|A|=12 \\
A^{T} & =\left(\begin{array}{ccc}
1 & 0 & -2 \\
-1 & 3 & -1 \\
2 & -1 & 1
\end{array}\right) \quad \therefore\left|A^{T}\right|=|A|=12
\end{aligned}
$$

Properties of determinant

55. If a square matrix B is obtained from a square matrix A by interchanging any two rows or any two columns, then $|B|=-|A|$.

Example:
Given $\left|\begin{array}{lcc}a & k & p \\ b & l & q \\ c & m & r\end{array}\right|=10$.

$$
\left|\begin{array}{ccc}
c & m & r \\
b & l & q \\
a & k & p
\end{array}\right|=-\left|\begin{array}{ccc}
a & k & p \\
b & l & q \\
c & m & r
\end{array}\right|=-10
$$

Interchanging the $1^{\text {st }}$ row with the $3^{\text {rd }}$ row.

Properties of determinant

6.If A is an upper triangular or a lower triangular matrix, then $|A|$ can be obtained by multiplying the elements on the leading diagonal.

Example:

$=2$
$|A|=(1)(-2)(-1) \quad$ Multiplying the elements on the leading diagonal.

Upper triangular matrix.

Properties of determinant

If A and B are two square matrices of the same order, then $|A B|=|A| \times|B|$.

Example:

Given that $|A|=\left|\begin{array}{ccc}3 & -2 & 4 \\ 1 & 0 & 0 \\ 5 & 3 & -1\end{array}\right|=10$ and
$|B|=\left|\begin{array}{ccc}1 & 5 & 3 \\ 0 & -1 & -4 \\ 0 & 0 & 2\end{array}\right|=-2$.
$\therefore|A B|=|A| \times|B|=(10)(-2)=-20$

Example

(1) Find the determinant of $A=\left[\begin{array}{cc}3 & 2 \\ 4 & -1\end{array}\right]$.
(2) Evaluate $|A|$ if $A=\left[\begin{array}{ccc}3 & 5 & 4 \\ 1 & 3 & 2 \\ -2 & -4 & 5\end{array}\right]$.
(3) Given $A=\left[\begin{array}{ccc}2 & y & -1 \\ y & 2 & 1 \\ -3 & -1 & 1\end{array}\right]$. Find y if $|A|=0$.

Solution

(1) $\quad|A|=(3)(-1)-(2)(4)$

$$
=-11
$$

(2) Expand about the $1^{\text {st }}$ row.

$$
\begin{aligned}
|A| & =+(3)\left|\begin{array}{cc}
3 & 2 \\
-4 & 5
\end{array}\right|-(5)\left|\begin{array}{cc}
1 & 2 \\
-2 & 5
\end{array}\right|+(4)\left|\begin{array}{cc}
1 & 3 \\
-2 & -4
\end{array}\right| \\
& =3(15+8)-5(5+4)+4(-4+6) \\
& =32
\end{aligned}
$$

Solution (Continue...)

(3) Expand about the $1^{\text {st }}$ row.

$$
\begin{gathered}
|A|=+(2)\left|\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right|-(y)\left|\begin{array}{cc}
y & 1 \\
-3 & 1
\end{array}\right|+(-1)\left|\begin{array}{cc}
y & 2 \\
-3 & -1
\end{array}\right|=0 \\
2[(2)-(-1)]-y[y+3]-[-y+6]=0 \\
y^{2}+2 y=0 \\
y(y+2)=0 \\
\therefore y=0 \text { or } y=-2
\end{gathered}
$$

Self-check

(1) Find the determinant of $A=\left[\begin{array}{cc}-1 & 2 \\ -3 & -4\end{array}\right]$.
(2) Evaluate $|A|$ if $A=\left[\begin{array}{ccc}2 & 0 & 3 \\ -1 & 1 & 2 \\ 2 & 5 & 0\end{array}\right]$.
(3) Given $A=\left[\begin{array}{ccc}1 & 3 & -2 \\ 2 & 0 & k \\ -1 & k & 1\end{array}\right]$. Find k if $|A|=0$.

Answer Self-check

(1) 10
(2) -41
(3) $k=-6$ or $k=-1$

Summary

Key Terms

- Minor
- Cofactor
- Determinant
kwkang@KMK

