Chapter 4: Matrices and Systems

of Linear Equations

4.4 System of Linear Equations with Three Variables

Prepared by: kwkang

Learning Outcomes

(a) Write a system of linear equations in the form of $A X=B$
*Up to 3×3 matrices.
** Apply to some practical problems.
(b) Solve the unique solution of $A X=B$ using:
(i) Inverse Matrix;
(ii) Elimination Method,

* Introduce Gauss-Jordan
kwkang@кмк

Matrix Equation

The system of linear equations

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2} \\
& a_{31} x+a_{32} y+a_{33} z=b_{3}
\end{aligned}
$$

Can be written in the form $A X=B$

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Where

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Matrix of coefficients

Example

(1) Write the following system of linear equations in the form $A X=B$.

$$
\begin{aligned}
& x+2 y-6 z=11 \\
& 2 x-y+2 z=3 \\
& 3 x-2 y-2 z=9
\end{aligned}
$$

Solution:

$$
\left(\begin{array}{ccc}
1 & 2 & -6 \\
2 & -1 & 2 \\
3 & -2 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
11 \\
3 \\
9
\end{array}\right)
$$

Methods of solving

Methods of solving $A X=B$

1. Using inverse matrix

$$
\begin{array}{rlr}
A X & =B & \\
A^{-1} A X & =A^{-1} B & \\
& \text { Multiplying each side on the left by } A^{-1} \\
I X & =A^{-1} B & A^{-1} A=I \\
X & =A^{-1} B & I X=X
\end{array}
$$

Methods of solving

Methods of solving $A X=B$
2. Gauss-Jordan elimination method

Step 1: Write in the form of $A X=B$.
Step 2: Form an augmented matrix $(A \mid B)$.
Step 3: Use elementary row operations (ERO) to reduce the augmented matrix $(A \mid B)$ to a reduced augmented form ($I \mid C$) .

Example

(1) By using the inverse matrix, solve the following system of linear equations

$$
\begin{aligned}
x+y+2 z & =3 \\
-2 x+3 y+4 z & =-3 \\
5 x-4 y-z & =13
\end{aligned}
$$

(2) By using the Gauss-Jordan elimination method, solve the following system of linear equations.

$$
\begin{array}{r}
x+y=0 \\
2 x+3 y+3 z=1 \\
-x+y+z=1
\end{array}
$$

Solution

(1) By using inverse matrix

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 1 & 2 \\
-2 & 3 & 4 \\
5 & -4 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 \\
-3 \\
13
\end{array}\right) \text { Writing the system of equations in the form } A X=B \\
\\
A
\end{gathered} \quad X \quad B \quad \begin{aligned}
& \text { B }
\end{aligned}
$$

$$
\begin{array}{rlr}
|A| & =(+)(1)\left|\begin{array}{cc}
3 & 4 \\
-4 & -1
\end{array}\right|(-)(1)\left|\begin{array}{cc}
-2 & 4 \\
5 & -1
\end{array}\right|(+)(2)\left|\begin{array}{cc}
-2 & 3 \\
5 & -4
\end{array}\right| & \begin{array}{l}
\text { Expanding about } \\
\text { the first row. }
\end{array} \\
& =(-3+16)-(2-20)+2(8-15) & \left(\begin{array}{ll}
+ & + \\
- & + \\
-
\end{array}\right)
\end{array}
$$

$$
C_{A}=\left[\begin{array}{ccc}
+\left|\begin{array}{cc}
3 & 4 \\
-4 & -1
\end{array}\right| & -\left|\begin{array}{cc}
-2 & 4 \\
5 & -1
\end{array}\right| & +\left|\begin{array}{cc}
-2 & 3 \\
5 & -4
\end{array}\right| \\
-\left|\begin{array}{cc}
1 & 2 \\
-4 & -1
\end{array}\right| & +\left|\begin{array}{cc}
1 & 2 \\
5 & -1
\end{array}\right| & -\left|\begin{array}{cc}
1 & 1 \\
5 & -4
\end{array}\right| \\
+\left|\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right| & -\left|\begin{array}{cc}
1 & 2 \\
-2 & 4
\end{array}\right| & +\left|\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right|
\end{array}\right]=\left[\begin{array}{ccc}
13 & 18 & -7 \\
-7 & -11 & 9 \\
-2 & -8 & 5
\end{array}\right]
$$

kwkang@KMK
Bloom: Understanding

Solution

(1) By using inverse matrix (Continue...)

$$
\left.\begin{array}{rl}
\text { Adj } A & =C_{A}{ }^{T}=\left[\begin{array}{ccc}
13 & -7 & -2 \\
18 & -11 & -8 \\
-7 & 9 & 5
\end{array}\right] \\
\begin{array}{rl}
A^{-1} & =\frac{1}{|A|} \text { Adj } A
\end{array} & X=\frac{1}{17}\left(\begin{array}{c}
39+21-26 \\
54+33-104 \\
-21-27+65
\end{array}\right) \\
A^{-1} & =\frac{1}{17}\left[\begin{array}{ccc}
13 & -7 & -2 \\
18 & -11 & -8 \\
-7 & 9 & 5
\end{array}\right] \\
X & =A^{-1} B \\
& =\frac{1}{17}\left(\begin{array}{c}
34 \\
-17 \\
17
\end{array}\right) \\
& =\frac{1}{17}\left[\begin{array}{ccc}
2 \\
-13 \\
18 & -7 & -2 \\
18 & -11 & -8 \\
-7 & 9 & 5
\end{array}\right]
\end{array}\right]\left[\begin{array}{c}
3 \\
-3 \\
13
\end{array}\right] \quad \begin{array}{ll}
\quad \therefore x=2, \quad y=-1, \quad z=1
\end{array}
$$

Solution

(2) By using Gauss-Jordan elimination method

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 3 & 3 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Writing the system of equations in the form $A X=B$

$$
\begin{array}{lll}
\left(\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
2 & 3 & 3 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right) \quad \text { Forr } \\
& \begin{array}{l}
R_{2}{ }^{*}=-2 R_{1}+R_{2} \\
\\
\\
R_{3}{ }^{*}=R_{1}+R_{3}
\end{array}
\end{array}
$$

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 \\
0 & 2 & 1 & 1
\end{array}\right)
$$

Changing the elements in the $2^{\text {nd }}$ and $3^{\text {rd }}$ rows of the $1^{\text {st }}$ column to 0 .

Solution

(2) By using Gauss-Jordan elimination method (Continue...)

$$
\begin{aligned}
& \left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 \\
0 & 2 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{ll|l|l}
1 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & -5 & -1
\end{array}\right) \quad \begin{array}{l}
\begin{array}{l}
\text { Changing the element in the } 3^{\text {rd }} \text { row of } \\
\text { the } 2 \text { nd column to } 0 .
\end{array} \\
\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & \frac{1}{5}
\end{array}\right) \\
\begin{array}{l}
\text { Changing the element in the } 3^{\text {rd }} \text { row of } \\
\text { the } 3^{\text {rd }} \text { column to } 0 .
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Solution

(2) By using Gauss-Jordan elimination method (Continue...)

$$
\begin{aligned}
& \left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & \frac{1}{5}
\end{array}\right) \\
& \\
& \\
& R_{2}^{*}=-3 R_{3}+R_{2} \\
& \left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & \frac{2}{5} \\
0 & 0 & 1 & \frac{1}{5}
\end{array}\right) \quad \begin{array}{l}
\text { Changing the element in the } 2^{\text {nd }} \text { row } \\
\text { of the } 3^{3 \text { rd }} \text { column to } 0 .
\end{array}
\end{aligned}
$$

Solution

(2) By using Gauss-Jordan elimination method (Continue...)

$$
\begin{aligned}
& \left(\begin{array}{lll|l|l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & \frac{1}{5} \\
0 & 0 & 1 & 1 \\
\frac{1}{5}
\end{array}\right) \\
& \left(\begin{array}{lll|l}
1 & 0 & 0 & -\frac{2}{5} \\
0 & 1 & 0 & \frac{2}{5} \\
0 & 0 & 1 & \frac{1}{5}
\end{array}\right) \quad \begin{array}{l}
\text { Changing the element in the } 1^{\text {st }} \text { row of } \\
\text { the } 2^{\text {nd }} \text { column to } 0 .
\end{array} \\
& \therefore x=-\frac{2}{5}, \quad y=\frac{2}{5}, \quad z=\frac{1}{5}
\end{aligned}
$$

Self-check

(1) By using the inverse matrix, solve the following system of linear equations

$$
\begin{aligned}
4 x+y+2 z & =13 \\
-2 x+3 y+z & =-9 \\
-x+3 y+z & =-7
\end{aligned}
$$

(2) By using the Gauss-Jordan elimination method, solve the following system of linear equations.

$$
\begin{aligned}
5 x-3 y+2 z & =13 \\
-2 x+y+3 z & =-1 \\
2 x-y+2 z & =6
\end{aligned}
$$

Answer Self-check

(1) $x=2, \quad y=-3, \quad z=4$
(2) $x=1, \quad y=-2, \quad z=1$

Summary

System of linear equations with three variables

Using inverse matrix

Gauss-Jordan elimination method

Key Terms

- Inverse matrix method
- Gauss-Jordan elimination method
- Augmented matrix
- Matrix of coefficients
- Matrix of variables
- Matrix of constants

