Chapter 5: Functions and Graphs

5.1 Functions

Prepared by: Kang Kooi Wei

Learning Outcomes

(a) Define a function.

* Emphasize the concept of one-to-one and onto.
(b) Identify a function from the graph by using vertical line test.
(c) Identify a one-to-one function by using algebraic approach or horizontal line test.
(d) Sketch the graph of a function.
* Include polynomials up to degree 3, functions such as piecewise, absolute values of linear functions, reciprocal, square root functions with linear expression.
(e) State the domain and range of a function.
* Use algebraic or graphical approach to find domain and range.

KangKooiWei@KMK

Functions

A function is a relation where each element of one set is mapped to exactly one and only one element of another set.
Consequently, relations which are one-to-one and many-to-one are functions.

One-to-one onto function

Many-to-one function

Function notation

The mapping of x to y under the function f can be written as

$$
f: x \rightarrow y \text { where } y=f(x)
$$

The set of all elements of X is called the domain of f.
The set of all elements of Y is called the codomain of f.
The set of all the images y is called the range of f.

Vertical line test for a function

Any vertical line $x=a$ intersects the graph of a function at most one point.

A vertical line intersects the graph at one point.
\therefore the graph represents a function.

A vertical line intersects the graph at two point.
\therefore the graph does not represent a function.

One-to-one function test

Algebraic Method (Method 1)

A function f is one-to-one if

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { Implies that } x_{1}=x_{2}
$$

Horizontal line test (Method 2)
Any horizontal line $y=b$ intersects the graph of a function at most one point, then f is one-to-one function.

Example

(1) By using the algebraic method, determine whether f is a one-to-one function or not. (a) $f(x)=\frac{x}{2 x+1}$
(b) $f(x)=|x-3|$
(2) Use graphical method to determine whether each of the following functions is a one-to-one function.
(a) $f(x)=x(x+4)$
(b) $f(x)=x^{3}+1$

Solution

(1)(a)

$$
\begin{array}{rlrl}
f\left(x_{1}\right) & =f\left(x_{2}\right) & \text { Let } f\left(x_{1}\right)=f\left(x_{2}\right) . \\
\frac{x_{1}}{2 x_{1}+1} & =\frac{x_{2}}{2 x_{2}+1} & \\
x_{1}\left(2 x_{2}+1\right) & =x_{2}\left(2 x_{1}+1\right) & \text { Cross multiplying. } \\
2 x_{1} x_{2}+x_{1} & =2 x_{1} x_{2}+x_{2} & & \text { Expanding both sides. } \\
x_{1} & =x_{2} &
\end{array}
$$

Since $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}, f$ is a one-to-one function.

Solution

(1)(b) $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\text { Let } f\left(x_{1}\right)=f\left(x_{2}\right)
$$

$$
\begin{aligned}
\left|x_{1}-3\right| & =\left|x_{2}-3\right| \\
x_{1}-3 & =x_{2}-3 \\
x_{1} & =x_{2}
\end{aligned} \quad \text { or } \quad x_{1}-3=-\left(x_{2}-3\right)
$$

Since $f\left(x_{1}\right)=f\left(x_{2}\right)$ does not imply $x_{1}=x_{2}, f$ is not a one-to-one function.

Solution

(2)(a) A horizontal line intersects the graph at two points, in particular $f(0)=f(-4)=0$. Therefore, f is not a one-to-one function.

Solution

(2)(b) A horizontal line intersects the graph at only one point.
Therefore, f is a one-to-one function.

Self-check

(1) By using the algebraic method, determine whether f is a one-to-one function or not.
(a) $f(x)=3-4 x$
(b) $f(x)=|2 x+5|$
(2) Use graphical method to determine whether each of the following functions is a one-to-one function.
(a) $f(x)=x^{2}-9$
(b) $f(x)=x^{3}$

Answer Self-check

(1) (a) One-to-one
(2) (a) Not one-to-one

Bloom: Applying
(b) Not one-to-one
(b) One-to-one

Domain and Range of a Function

Domain of a function f is the set of all real values of \boldsymbol{x} for which function f is defined as a real number. In a graph of $y=f(x)$, the domain is shown on the x-axis .

Domain of a function f is the set of all real values of y for which function f is defined as a real number.
In a graph of $y=f(x)$, the domain is shown on the y-axis.

Two methods to determine domain and range.
Method 1: Graphical method
Method 2: Algebraic method

Linear Graph

$$
f(x)=3-3 x
$$

x - intercept: When $y=0$

$$
x=1
$$

$$
y-\text { intercept }: \text { When } x=0
$$

$$
y=3
$$

KangKooiWei@KMK

Method 1: Graphical method to determine domain and range.

Domain of $\boldsymbol{f}=(-\infty, \infty)$
Range of $\boldsymbol{f}=(-\infty, \infty)$

Quadratic Graph

$f(x)=x^{2}-2 x-3$
y-intercept: When $x=0$

$$
y=-3
$$

$f(x)=x^{2}-2 x-3$
$f(x)=(x-1)^{2}-4$
Completing the squares to get minimum point.
\therefore Minimum point is $(1,-4)$.

KangKooiWei@KМк
Domain of $\boldsymbol{f}=(-\infty, \infty)$
Range of $f=[-4, \infty)$

Cubic Graph

$f(x)=(x+1)^{3}$
x - intercept:When $y=0$

$$
x=-1
$$

y-intercept: When $x=0$

$$
y=1
$$

> Method 1: Graphical method to determine domain and range.

Domain of $\boldsymbol{f}=(-\infty, \infty)$
Range of $f=(-\infty, \infty)$

Bloom: Remembering

Piecewise Functions Graph

$$
f(x)= \begin{cases}x^{2}, & x \geq 0 \\ x+2, & x<0\end{cases}
$$

Method 1: Graphical method to determine domain and range.

Domain of $f=(-\infty, \infty)$
Range of $\boldsymbol{f}=(-\infty, \infty)$

KangKooiWei@KMK
Bloom: Remembering

Absolute Value Functions Graph

$$
\begin{aligned}
& f(x)=|2-x|+2 \\
& f(x)= \begin{cases}(2-x)+2, & 2-x \geq 0 \\
-(2-x)+2, & 2-x<0\end{cases} \\
& f(x)= \begin{cases}4-x, & x \leq 2 \\
x, & x>2\end{cases}
\end{aligned}
$$

Method 1: Graphical method to determine domain and range.

Domain of $\boldsymbol{f}=(-\infty, \infty)$
Range of $f=[2, \infty)$

Rational Functions Graph

$$
f(x)=\frac{1}{x}+3
$$

Method 2: Algebraic method to determine domain and range.

To determine domain:

$$
x \neq 0
$$

For $f(x)$ to be defined.
To determine range:

$$
\begin{aligned}
& y=\frac{1}{x}+3 \\
& y-3=\frac{1}{x}
\end{aligned}
$$

$$
x=\frac{1}{y-3}
$$

Solving for x in terms of y .
Domain of $\boldsymbol{f}=(-\infty, \mathbf{0}) \cup(\mathbf{0}, \infty)$

$$
y \neq 3
$$

Range of $f=(-\infty, 3) \cup(3, \infty)$
KangKooiWei@КМк
Bloom: Remembering

Square Root Functions Graph

Example

(1) A function is defined by $f: x \rightarrow x^{2}+5, x \in R$.

Find
(a) $f(3)$
(b) $f(-5)$
(c) $f(x-1)$

Example

(2) Find the domain and range of the following functions.
(a) $f(x)=2 x^{2}-4 x+1$
(b) $f(x)=\sqrt{x-5}$
(c) $f(x)=\frac{1}{x}$

Solution

(1) $f: x \rightarrow x^{2}+5$
(a) $f(3)=(3)^{2}+5=14$
(b) $f(-5)=(-5)^{2}+5=30$
(c) $f(x-1)=(x-1)^{2}+5$

$$
\begin{aligned}
& =x^{2}-2 x+1+5 \\
& =x^{2}-2 x+6
\end{aligned}
$$

Solution

(2) (a) $f(x)=2\left[x^{2}-2 x+\frac{1}{2}\right]$

Completing the square. Coefficient of x^{2} must 1.

$$
\begin{aligned}
& =2\left[(x-1)^{2}-1+\frac{1}{2}\right] \\
& =2\left[(x-1)^{2}-\frac{1}{2}\right] \\
& =2(x-1)^{2}-1
\end{aligned}
$$

Minimum point is $(1,-1)$.

KangKooiWei@KMK

Bloom: Understanding

Solution

(2) (b) $f(x)=\sqrt{x-5}$

> To determine domain:
$f(x)$ is only defined if $x-5 \geq 0$
$\therefore x \geq 5$
$D_{f}=[5, \infty)$
To determine range:
$f(x) \geq 0$
$\boldsymbol{R}_{\boldsymbol{f}}=[0, \infty)$

$$
\begin{aligned}
\boldsymbol{D}_{f} & =[5, \infty) \\
\boldsymbol{R}_{f} & =[0, \infty)
\end{aligned}
$$

Solution

(2) (c) $f(x)=\frac{1}{x}$

To determine domain:
$f(x)$ is defined for all real numbers except 0 .

$$
\boldsymbol{D}_{\boldsymbol{f}}=(-\infty, \mathbf{0}) \cup(0, \infty)
$$

To determine range:
$y=\frac{1}{x} \quad$ Let $y=f(x)$.
$x=\frac{1}{y} \quad$ Rearrange to let x in terms of y.
$\boldsymbol{D}_{\boldsymbol{f}}=(-\infty, \mathbf{0}) \cup(\mathbf{0}, \infty)$
$y \neq 0 \quad$ For $\frac{1}{y}$ to be defined.
$\boldsymbol{R}_{\boldsymbol{f}}=(-\infty, \mathbf{0}) \cup(\mathbf{0}, \infty)$
$\boldsymbol{R}_{\boldsymbol{f}}=(-\infty, \mathbf{0}) \cup(\mathbf{0}, \infty)$
KangKooiWei@KMK
Bloom: Understanding

Self-check

(1) The linear function f is defined by $f: x \rightarrow 5 x-3, x \in R$. Find
(a) $f\left(\frac{1}{3}\right)$
(b) the value of x for which $f(x)=x$.
(2) Find the domain and range of the following functions
(a) $f(x)=3 x^{2}-7 x-1$
(b) $f(x)=\sqrt{2 x-1}$
(c) $f(x)=\frac{1}{x-3}$

Answer Self-check

$$
\begin{aligned}
\text { (1) (a) }-\frac{4}{3} & \text { (b) } \frac{3}{4} \\
\text { (2) (a) } D_{f} & =R, R_{f}=\left[-\frac{61}{12}, \infty\right) \\
\text { (b) } D_{f} & =\left[\frac{1}{2}, \infty\right), R_{f}=[0, \infty) \\
\text { (c) } D_{f} & =(-\infty, 3) \cup(3, \infty) \\
R_{f} & =(-\infty, 0) \cup(0, \infty)
\end{aligned}
$$

KangKooiWei@KMK
Bloom: Applying

Summary

Horizontal line test

Identify one-to-one function.

Vertical line test

Algebraic or Graphical Approach to determine Domain and Range. Sometime can mix both method to determine Domain and Range.

Summary

Key Terms

- Functions
- Domain
- Range
- One-to-one function
- Horizontal line test
- Vertical line test
- Graph

KangKooiWei@KMK

