Chapter 5: Functions and Graphs

5.1 Functions

Prepared by: Kang Kooi Wei

Learning Outcomes

- (a) Define a function.
 - * Emphasize the concept of one-to-one and onto.
- (b) Identify a function from the graph by using vertical line test.
- (c) Identify a one-to-one function by using algebraic approach or horizontal line test.
- (d) Sketch the graph of a function.
 - * Include polynomials up to degree 3, functions such as piecewise, absolute values of linear functions, reciprocal, square root functions with linear expression.
- (e) State the domain and range of a function.
 - * Use algebraic or graphical approach to find domain and range.

Bloom: Understanding

Functions

A function is a relation where each element of one set is mapped to exactly one and only one element of another set. Consequently, relations which are one-to-one and many-to-one are functions.

One-to-one onto function

Many-to-one function

Function notation

The mapping of x to y under the function f can be written as $f: x \to y$ where y = f(x)

The set of all elements of X is called the domain of f.

The set of all elements of Y is called the codomain of f.

The set of all the images y is called the range of f.

Vertical line test for a function

Any vertical line x = a intersects the graph of a function at most one point.

A vertical line intersects the graph at one point.

∴ the graph represents a function.

A vertical line intersects the graph at two point.

: the graph does not represent a function.

One-to-one function test

Algebraic Method

(Method 1)

A function f is one-to-one if

$$f(x_1) = f(x_2)$$
 Implies that $x_1 = x_2$

Horizontal line test (Method 2)

Any horizontal line y = b intersects the graph of a function at most one point, then f is one-to-one function.

Example

(1) By using the algebraic method, determine whether *f* is a one-to-one function or not.

(a)
$$f(x) = \frac{x}{2x+1}$$

(b)
$$f(x) = |x - 3|$$

(2) Use graphical method to determine whether each of the following functions is a one-to-one function.

(a)
$$f(x) = x(x+4)$$

(b)
$$f(x) = x^3 + 1$$

(1)(a)
$$f(x_1) = f(x_2)$$
 Let $f(x_1) = f(x_2)$.
$$\frac{x_1}{2x_1 + 1} = \frac{x_2}{2x_2 + 1}$$

$$x_1(2x_2 + 1) = x_2(2x_1 + 1)$$
 Cross multiplying.
$$2x_1x_2 + x_1 = 2x_1x_2 + x_2$$
 Expanding both sides.
$$x_1 = x_2$$

Since $f(x_1) = f(x_2)$ implies $x_1 = x_2$, f is a one-to-one function.

(1)(b)
$$f(x_1) = f(x_2)$$
 Let $f(x_1) = f(x_2)$.
 $|x_1 - 3| = |x_2 - 3|$ or $x_1 - 3 = -(x_2 - 3)$
 $x_1 = x_2$ $x_1 = -x_2 + 6$

Since $f(x_1) = f(x_2)$ does not imply $x_1 = x_2$, f is not a one-to-one function.

(2)(a) A horizontal line intersects the graph at two points, in particular f(0) = f(-4) = 0. Therefore, f is not a one-to-one function.

Bloom: Understanding

(2)(b) A horizontal line intersects the graph at only one point.

Therefore, *f* is a one-to-one function.

Self-check

(1) By using the algebraic method, determine whether *f* is a one-to-one function or not.

(a)
$$f(x) = 3 - 4x$$

(b)
$$f(x) = |2x + 5|$$

(2) Use graphical method to determine whether each of the following functions is a one-to-one function.

(a)
$$f(x) = x^2 - 9$$

(b)
$$f(x) = x^3$$

Answer Self-check

(1) (a) One-to-one

(b) Not one-to-one

(2) (a) Not one-to-one

(b) One-to-one

Bloom: Applying

Domain and Range of a Function

Domain of a function f is the set of all real values of x for which function f is defined as a real number.

In a graph of y = f(x), the domain is shown on the x - axis.

Domain of a function f is the set of all real values of y for which function f is defined as a real number.

In a graph of y = f(x), the domain is shown on the y - axis.

Two methods to determine domain and range.

Method 1: Graphical method

Method 2: Algebraic method

Linear Graph

$$f(x) = 3 - 3x$$

$$x - intercept$$
: When $y = 0$

$$x = 1$$

$$y - intercept$$
: When $x = 0$

Method 1: Graphical method to determine domain and range.

Domain of
$$f = (-\infty, \infty)$$

Range of
$$f = (-\infty, \infty)$$

Quadratic Graph

$$f(x) = x^2 - 2x - 3$$

$$y - intercept$$
: When $x = 0$
 $y = -3$

$$f(x) = x^2 - 2x - 3$$

$$f(x) = (x - 1)^2 - 4$$

Method 1: Graphical method to determine domain and range.

Completing the squares to get minimum point.

 \therefore Minimum point is (1, -4).

Domain of $f = (-\infty, \infty)$

Range of $f = [-4, \infty)$

KangKooiWei@KMK

Cubic Graph

$$f(x) = (x+1)^3$$

x - intercept: When y = 0

$$x = -1$$

y - intercept: When x = 0

$$y = 1$$

Method 1: Graphical method to determine domain and range.

Domain of $f = (-\infty, \infty)$

Range of
$$f = (-\infty, \infty)$$

Piecewise Functions Graph

$$f(x) = \begin{cases} x^2, & x \ge 0 \\ x+2, & x < 0 \end{cases}$$

Method 1: Graphical method to determine domain and range.

Domain of $f = (-\infty, \infty)$

Range of $f = (-\infty, \infty)$

KangKooiWei@KMK

Absolute Value Functions Graph

f(x) = |2 - x| + 2

$$f(x) = \begin{cases} (2-x)+2, & 2-x \ge 0 \\ -(2-x)+2, & 2-x < 0 \end{cases}$$

$$f(x) = \begin{cases} 4 - x, & x \le 2 \\ x, & x > 2 \end{cases}$$

Method 1: Graphical method to determine domain and range.

Domain of $f = (-\infty, \infty)$

Range of $f = [2, \infty)$

Rational Functions Graph

$$f(x) = \frac{1}{x} + 3$$

Method 2: Algebraic method to determine domain and range.

To determine domain:

$$x \neq 0$$

For f(x) to be defined.

To determine range:

$$y = \frac{1}{x} + 3$$

Letting
$$y = f(x)$$
.

$$y-3=\frac{1}{x}$$

$$x = \frac{1}{v - 3}$$

Solving for x in terms of y.

$$y \neq 3$$

For $\frac{1}{y-3}$ to be defined.

Domain of
$$f = (-\infty, 0) \cup (0, \infty)$$

Range of
$$f = (-\infty, 3) \cup (3, \infty)$$

Square Root Functions Graph

$$f(x) = \sqrt{x-2}$$

Method 2: Algebraic method to determine domain and range.

To determine domain:

$$x-2 \geq 0$$

$$x \geq 2$$

Domain of $f = [2, \infty)$

To determine range:

$$\sqrt{x-2} \geq 0$$

$$f(x) \geq 0$$

Range of $f = [0, \infty)$

Example

- (1) A function is defined by $f: x \to x^2 + 5$, $x \in \mathbb{R}$. Find
 - (a) f(3)

- (b) f(-5)
- (c) f(x-1)

Example

(2) Find the domain and range of the following functions.

(a)
$$f(x) = 2x^2 - 4x + 1$$

(b)
$$f(x) = \sqrt{x-5}$$

(c)
$$f(x) = \frac{1}{x}$$

(1)
$$f: x \to x^2 + 5$$

(a)
$$f(3) = (3)^2 + 5 = 14$$

(b)
$$f(-5) = (-5)^2 + 5 = 30$$

(c)
$$f(x-1) = (x-1)^2 + 5$$

= $x^2 - 2x + 1 + 5$
= $x^2 - 2x + 6$

(2) (a)
$$f(x) = 2\left[x^2 - 2x + \frac{1}{2}\right]$$

$$= 2\left[(x-1)^2 - 1 + \frac{1}{2}\right]$$

$$= 2\left[(x-1)^2 - \frac{1}{2}\right]$$

$$= 2(x-1)^2 - 1$$

Completing the square. Coefficient of x^2 must 1.

Minimum point is (1,-1).

 $D_f = R$ $R_f = [-1, \infty)$

Real number.

Bloom: Understanding

KangKooiWei@KMK

(2) (b)
$$f(x) = \sqrt{x-5}$$

To determine domain:

f(x) is only defined if $x - 5 \ge 0$

$$\therefore x \geq 5$$

$$D_f = [5, \infty)$$

To determine range:

$$f(x) \ge 0$$

$$R_f = [0, \infty)$$

$$D_f = [5, \infty)$$

$$R_f = [0, \infty)$$

Bloom: Understanding

(2) (c)
$$f(x) = \frac{1}{x}$$

To determine domain:

f(x) is defined for all real numbers except 0.

$$D_f = (-\infty, 0) \cup (0, \infty)$$

To determine range:

$$y = \frac{1}{x}$$
 Let $y = f(x)$.

$$x = \frac{1}{y}$$
 Rearrange to let x in terms of y.

$$y \neq 0$$
 For $\frac{1}{y}$ to be defined.

$$R_f = (-\infty, \mathbf{0}) \cup (\mathbf{0}, \infty)$$

$$\boldsymbol{D}_f = (-\infty, \mathbf{0}) \cup (\mathbf{0}, \infty)$$

$$R_f = (-\infty, \mathbf{0}) \cup (\mathbf{0}, \infty)$$

Bloom: Understanding

Self-check

(1) The linear function f is defined by $f: x \to 5x - 3$, $x \in \mathbb{R}$. Find

(a)
$$f\left(\frac{1}{3}\right)$$

- (b) the value of x for which f(x) = x.
- (2) Find the domain and range of the following functions

(a)
$$f(x) = 3x^2 - 7x - 1$$

(b) $f(x) = \sqrt{2x - 1}$

$$\text{(b) } f(x) = \sqrt{2x-1}$$

(c)
$$f(x) = \sqrt{2x}$$

Answer Self-check

(1) (a)
$$-\frac{4}{3}$$

(b)
$$\frac{3}{4}$$

(2) (a)
$$D_f = R, R_f = \left[-\frac{61}{12}, \infty \right)$$

(b)
$$D_f = \left[\frac{1}{2}, \infty), R_f = [0, \infty)\right]$$

(c) $D_f = (-\infty, 3) \cup (3, \infty)$
 $R_f = (-\infty, 0) \cup (0, \infty)$

(c)
$$D_f = (-\infty, 3) \cup (3, \infty)$$

$$\mathbf{R}_f = (-\infty, \mathbf{0}) \cup (\mathbf{0}, \infty)$$

Bloom: Applying

Summary

Horizontal line test

Identify one-to-one function.

Vertical line test

Identify a function.

Algebraic or Graphical Approach to determine Domain and Range. Sometime can mix both method to determine Domain and Range.

Summary

Key Terms

- Functions
- Domain
- Range
- One-to-one function
- Horizontal line test
- Vertical line test
- Graph