Chapter 5: Functions and Graphs

5.3 Inverse Functions

Prepared by: Kang Kooi Wei

Learning Outcomes

(a) Show whether a function has an inverse and find the inverse of the function

* Use algebraic or graphical approach.
* Emphasize that the inverse exists only for one-to-one and onto functions.
(b) Compute the inverse of a function.

$$
f \cdot g(x)=g \cdot f(x)=x . \text { implies } f \text { inverse of } g
$$

(c) Identify the domain and range of an inverse function.
(d) Sketch the graph of the function f and its inverse f^{-1} on the same axes.

Inverse functions

The inverse of a function f exists if and only if f is a one-to-one function.
*Refer SDL 5.1 to determine one-to-one function using algebraic method or horizontal line test.

Domain and Range of Inverse Function

Domain of $f^{-1}=$ Range of f
Range of $f^{-1}=$ Domain of f

$$
f^{-1}[f(x)]=f\left[f^{-1}(x)\right]=x
$$

Bloom: Remembering
KangKooiWei@КМк
Bloom: Understanding

Inverse Functions

Relationship between graphs of a function and its inverse

The graph of f^{-1} is obtained by reflecting the graph of \boldsymbol{f} in the line $y=x$. The points (x, y) and (y, x) are at the same distances from the line $y=x$.

Example

1. The function f is defined by $f: x \rightarrow 2 x-1, x \in R$.
(a) Show that f is a one-to-one function.
(b) Find f^{-1}.
(c) Verify that $f\left(f^{-1}(x)\right)=x$.
2. Find the inverse for the function $f(x)=x^{2}+x-2, x \geq-\frac{1}{2}$ and state the domain and the range for the inverse function. Sketch the graph of $y=f(x)$ and $y=f^{-1}(x)$ in the same diagram.

Solution

1. (a) $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\text { Let } f\left(x_{1}\right)=f\left(x_{2}\right) \text {. }
$$

$$
\begin{aligned}
2 x_{1}-1 & =2 x_{2}-1 \\
x_{1} & =x_{2}
\end{aligned}
$$

Hence \boldsymbol{f} is one-to-one function.
(b) $f(x)=2 x-1=y \quad$ Let $f(x)=y$.
$\therefore \quad x=\frac{y+1}{2}$
Rearranging to let x in term of y.
$\therefore f^{-1}(y)=x=\frac{y+1}{2}$
Hence, $f^{-1}(x)=\frac{x+1}{2}$

Solution

1. (c)

$$
\begin{aligned}
& \text { 1. (c) } \begin{aligned}
& f\left(f^{-1}(x)\right)=f\left(\frac{x+1}{2}\right) \\
&=2\left(\frac{x+1}{2}\right)-1 \\
&=x \\
& \text { 2. } f(x)=x^{2}+x-2, x \geq-\frac{1}{2} \\
& f(x)=x^{2}+x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}-2 \quad \text { Composite function definition. } \\
&=\left(x+\frac{1}{2}\right)^{2}-\frac{9}{4} \quad \text { Minimum point }=\left(-\frac{1}{2},-\frac{9}{4}\right) .
\end{aligned}
\end{aligned}
$$

KangKooiWei@KMK
Bloom: Understanding

Solution

2. Continue...

$$
f\left(f^{-1}(x)\right)=x
$$

$\left(f^{-1}(x)+\frac{1}{2}\right)^{2}-\frac{9}{4}=x$
$f^{-1}(x)=-\frac{1}{2} \pm \sqrt{x+\frac{9}{4}}$
Since, $\boldsymbol{R}_{f^{-1}}=D_{f}=\left[-\frac{1}{\mathbf{2}}, \infty\right)$
$\therefore f^{-1}(x)=-\frac{1}{2}+\sqrt{x+\frac{9}{4}}$
KangKooiWei@КМк

From minimum point,
Domain $f=\left[-\frac{1}{2}, \infty\right)$
Range $\mathrm{f}=\left[-\frac{9}{4}, \infty\right)$

$$
\begin{aligned}
\boldsymbol{D}_{f^{-1}} & =\boldsymbol{R}_{\boldsymbol{f}} \\
\boldsymbol{R}_{f^{-1}} & =\boldsymbol{D}_{\boldsymbol{f}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad D_{f^{-1}} & =\left[-\frac{9}{4}, \infty\right) \\
R_{f^{-1}} & =\left[-\frac{1}{2}, \infty\right)
\end{aligned}
$$

Bloom: Understanding

Solution

2. Continue...

Self-check

1. The function f is defined by $f: x \rightarrow x^{3}-1, x \in R$.
(a) Show that f is a one-to-one function.
(b) Find f^{-1}.
(c) Verify that $f\left(f^{-1}(x)\right)=x$.
2. Find the inverse for the function $f(x)=x^{2}+2 x+3, x \geq-1$ and state the domain and the range for the inverse function. Sketch the graph of $y=f(x)$ and $y=f^{-1}(x)$ in the same diagram.

Answer Self-check

1. (b) $f^{-1}(x)=(x+1)^{\frac{1}{3}}$
2. $f^{-1}(x)=-1+\sqrt{x-2}$

$$
\begin{aligned}
& \boldsymbol{D}_{f^{-1}}=[2, \infty) \\
& \boldsymbol{R}_{f^{-1}}=[-1, \infty)
\end{aligned}
$$

KangKooiWei@KMK

Summary

The inverse of a function f exists if and only if f is a one-to-one function.

$$
\begin{aligned}
& \boldsymbol{D}_{\boldsymbol{f}^{-1}}=\boldsymbol{R}_{\boldsymbol{f}} \\
& \boldsymbol{R}_{\boldsymbol{f}^{-1}}=\boldsymbol{D}_{\boldsymbol{f}}
\end{aligned}
$$

Inverse Function

The graphs of f

$$
f^{-1}
$$ and f^{-1} are

reflecting on the
line $y=x$.

Key Terms

- Inverse Functions
- Domain
- Range
- Composite Functions
- Function

KangKooiWei@KMK

